Math 111 – 1 Functions and Graphs

Slope of a line is:
$$m=rac{\Delta y}{\Delta x}=rac{y_2-y_1}{x_2-x_1}$$
 .

- Slope-intercept equation: y = mx + n.
- Point-slope equation: $y y_0 = m(x x_0)$.
- If two lines are parallel: $m_1 = m_2$.
- If two lines are perpendicular: $m_1 \cdot m_2 = -1$.

Example 1–1: Find the equation of the line with slope m = 4, passing through the points (2, 5).

Solution: Using point-slope equation, we find:

$$y-5 = 4(x-2) \quad \Rightarrow \quad y = 4x-3$$

Example 1–2: Find the equation of the line passing through the points (24, 0) and (8, -6).

Solution: The slope is: $m = \frac{-6 - 0}{8 - 24} = \frac{-6}{-16} = \frac{3}{8}$.

Using point-slope equation, we find:

$$y - 0 = \frac{3}{8}(x - 24) \implies y = \frac{3}{8}x - 9$$

In other words: 3x - 8y = 72.

Function: A function f defined on a set D of real numbers is a rule that assigns to each number x in D exactly one real number, denoted by f(x).

Intervals:

- Closed interval: $[a, b] = \{x : a \leqslant x \leqslant b\}$
- Open interval: $(a, b) = \{x : a < x < b\}$
- Half-open interval: $(a, b] = \{x : a < x \leq b\}$
- Unbounded interval: $(a, \infty) = \{x : a < x\}$

We will use \mathbb{R} to denote all real numbers, in other words the interval $(-\infty, \infty)$.

Domain, Range: The set D of all numbers for which f(x) is defined is called the domain of the function f. The set of all values of f(x) is called the range of f.

Example 1–3: Find the domain and range of the function $f(x) = \sqrt{x-4}$.

Solution: Square root of a negative number is undefined. (In this course, we are not using complex numbers.) Therefore

 $x - 4 \ge 0 \quad \Rightarrow \quad x \ge 4$

In other words, domain is: $[4, \infty)$

For x = 4 we obtain y = 0. We can also obtain any positive value for y. Therefore the range is $[0, \infty)$

Example 1–4: Find the domain and range of the function $f(x) = \frac{1}{\sqrt{x-4}}$.

Solution: This is similar to previus exercise, but the function is not defined at x = 4. Therefore,

Domain is: $(4, \infty)$ Range is: $(0, \infty)$ **Piecewise-Defined Functions:** We may define a function using different formulas for different parts of the domain. For example, the absolute value function is:

Example 1–5: Find the formula of the function f(x):

Solution:

$$f(x) = \begin{cases} \frac{x+4}{2} & \text{if } x < -2\\ 1 & \text{if } -2 \leqslant x \leqslant 2\\ \frac{-x+4}{2} & \text{if } x > 2 \end{cases}$$

Quadratic Equations: The solution of the equation $ax^2 + bx + c = 0$ is:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}, \qquad \Delta = b^2 - 4ac$$

Here, we assume $a \neq 0$.

- If $\Delta > 0$, there are two distinct solutions.
- If $\Delta = 0$, there is a single solution.
- If $\Delta < 0$, there is no real solution.

(In this course, we only consider real numbers)

Example 1–6: Solve $4x^2 + 8x - 5 = 0$.

Solution: $x = \frac{-8 \pm \sqrt{64 - 4 \cdot 4 \cdot (-5)}}{2 \cdot 4}$ = $\frac{-8 \pm \sqrt{144}}{8}$ = $\frac{-8 \pm 12}{8}$ or $\frac{-8 \pm 12}{8}$ $x_1 = \frac{1}{2}, \quad x_2 = -\frac{5}{2}$

Example 1–7: Solve $3x^2 + 6x + 4 = 0$.

Solution: $\Delta = b^2 - 4ac$ = 36 - 48= -12

 $\Delta < 0 \quad \Rightarrow \quad \text{There is no solution}.$

EXERCISES

Perform the following operations. Simplify the result:

1–1) $(2^3)^2$

1–2)
$$\left(\frac{1}{16}\right)^{3/4}$$

1–4)
$$\sqrt[3]{-125}$$

1–5)
$$\sqrt[3]{\frac{8}{1000}}$$

1–6)
$$(a+b)^2$$

1–7)
$$(a+b)(a-b)$$

1–8) $x^3 - 1$

1–9)
$$\frac{\sqrt{12}}{\sqrt{5}-\sqrt{3}}$$

1–10)
$$x^4 - 100y^4$$

Find the equations of the following lines:

1–11) Passes through origin and has slope $m = \frac{1}{5}$.

1–12) Passes through the point (-2, 6) and has slope m = 3.

1–13) Passes through the points (-8, 2) and (-1, -2).

1–14) Passes through (0, -3) and parallel to the line 10y - 5x = 99.

1–15) Passes through (9, 12) and perpendicular to the line 2x + 5y = 60.

Find the domain and range of the following functions:

1–16)
$$f(x) = \sqrt{10 - x}$$

- **1–17)** $f(x) = x^2 + 12x + 35$
- **1–18)** $f(x) = 8x x^2$

1–19)
$$f(x) = \frac{1}{x^2 - 6x + 9}$$

1–20)
$$f(x) = \frac{3}{x-7}$$

Solve the following quadratic equations:

1–21)
$$x^2 - 5x - 24 = 0$$

1–22)
$$2x^2 + 9x - 5 = 0$$

1–23)
$$6x^2 - 7x + 2 = 0$$

1–24)
$$49x^2 - 14x + 1 = 0$$

1–25)
$$4x^2 + 6x + 3 = 0$$

1–26)
$$x^2 - 17x = 0$$

1–27)
$$4x^2 - 20x + 25 = 0$$

1–28)
$$x^2 - 4x + 5 = 0$$

1–29)
$$x^2 - \frac{10}{3}x + 1 = 0$$

1–30)
$$x^2 - 2x - 1 = 0$$

ANSWERS

1-1)
$$2^3 \cdot 2^3 = 2^6 = 64$$

1–2)
$$(2^{-4})^{3/4} = 2^{-3} = \frac{1}{8}$$

1-3)
$$\sqrt{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$$

1–4)
$$[(-5)^3]^{1/3} = -5$$

1-5)
$$\frac{\sqrt[3]{8}}{\sqrt[3]{1000}} = \frac{2}{10} = 0.2$$

1-6)
$$a^2 + 2ab + b^2$$

1–7) $a^2 - b^2$

1–8)
$$(x-1)(x^2+x+1)$$

1–9) $\sqrt{15} + 3$

1–10)
$$(x^2 - 10y^2)(x^2 + 10y^2)$$

1–11)
$$y = \frac{1}{5}x$$

1–12)
$$y = 3x + 12$$

1–13)
$$4x + 7y + 18 = 0$$

1–14) x - 2y = 6

1–15) 5x - 2y = 21

1–16) Domain: $(-\infty, 10]$, range: $[0, \infty)$.

1–17) Domain: \mathbb{R} , range: $[-1,\infty)$.

1–18) Domain: \mathbb{R} , range: $(-\infty, 16)$.

1–19) Domain: $\mathbb{R} \setminus \{3\}$, range: $(0, \infty)$.

1–20) Domain: $\mathbb{R} \setminus \{7\}$, range: $(-\infty, 0) \cup (0, \infty)$.

1–21) $x_1 = 8$, $x_2 = -3$.

1–22)
$$x_1 = \frac{1}{2}, \quad x_2 = -5.$$

1–23)
$$x_1 = \frac{1}{2}, \quad x_2 = \frac{2}{3}.$$

1–24)
$$x_1 = \frac{1}{7}$$
. (double root.)

1–26)
$$x_1 = 0, \quad x_2 = 17.$$

1–27)
$$x_1 = \frac{5}{2}$$
. (double root.)

1-28) There is no solution.

1–29)
$$x_1 = 3, \quad x_2 = \frac{1}{3}.$$

1-30)
$$x_1 = 1 + \sqrt{2}, \quad x_2 = 1 - \sqrt{2}.$$