Math 111-1
 Functions and Graphs

Slope of a line is: $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

- Slope-intercept equation: $y=m x+n$.
- Point-slope equation: $y-y_{0}=m\left(x-x_{0}\right)$.
- If two lines are parallel: $m_{1}=m_{2}$.
- If two lines are perpendicular: $m_{1} \cdot m_{2}=-1$.

Example 1-1: Find the equation of the line with slope $m=4$, passing through the points $(2,5)$.

Solution: Using point-slope equation, we find:

$$
y-5=4(x-2) \quad \Rightarrow \quad y=4 x-3
$$

Example 1-2: Find the equation of the line passing through the points $(24,0)$ and $(8,-6)$.

Solution: The slope is: $m=\frac{-6-0}{8-24}=\frac{-6}{-16}=\frac{3}{8}$.
Using point-slope equation, we find:

$$
y-0=\frac{3}{8}(x-24) \quad \Rightarrow \quad y=\frac{3}{8} x-9
$$

In other words: $3 x-8 y=72$.

Function: A function f defined on a set D of real numbers is a rule that assigns to each number x in D exactly one real number, denoted by $f(x)$.

Intervals:

- Closed interval: $[a, b]=\{x: a \leqslant x \leqslant b\}$
- Open interval: $(a, b)=\{x: a<x<b\}$
- Half-open interval: $(a, b]=\{x: a<x \leqslant b\}$
- Unbounded interval: $(a, \infty)=\{x: a<x\}$

We will use \mathbb{R} to denote all real numbers, in other words the interval $(-\infty, \infty)$.
Domain, Range: The set D of all numbers for which $f(x)$ is defined is called the domain of the function f. The set of all values of $f(x)$ is called the range of f.

Example 1-3: Find the domain and range of the function $f(x)=\sqrt{x-4}$.
Solution: Square root of a negative number is undefined. (In this course, we are not using complex numbers.) Therefore
$x-4 \geqslant 0 \quad \Rightarrow \quad x \geqslant 4$
In other words, domain is: $[4, \infty)$
For $x=4$ we obtain $y=0$. We can also obtain any positive value for y. Therefore the range is $[0, \infty)$

Example 1-4: Find the domain and range of the function $f(x)=\frac{1}{\sqrt{x-4}}$.
Solution: This is similar to previus exercise, but the function is not defined at $x=4$. Therefore,

Domain is: $(4, \infty)$
Range is: $(0, \infty)$

Piecewise-Defined Functions: We may define a function using different formulas for different parts of the domain. For example, the absolute value function is:

$$
|x|=\left\{\begin{array}{cc}
x & x \geqslant 0 \\
-x & x<0
\end{array}\right.
$$

Example 1-5: Find the formula of the function $f(x)$:

Solution:

$$
f(x)=\left\{\begin{array}{ccc}
\frac{x+4}{2} & \text { if } & x<-2 \\
1 & \text { if } & -2 \leqslant x \leqslant 2 \\
\frac{-x+4}{2} & \text { if } & x>2
\end{array}\right.
$$

Quadratic Equations: The solution of the equation $a x^{2}+b x+c=0$ is:

$$
x=\frac{-b \pm \sqrt{\Delta}}{2 a}, \quad \Delta=b^{2}-4 a c
$$

Here, we assume $a \neq 0$.

- If $\Delta>0$, there are two distinct solutions.
- If $\Delta=0$, there is a single solution.
- If $\Delta<0$, there is no real solution.
(In this course, we only consider real numbers)

Example 1-6: Solve $4 x^{2}+8 x-5=0$.
Solution: $x=\frac{-8 \pm \sqrt{64-4 \cdot 4 \cdot(-5)}}{2 \cdot 4}$

$$
\begin{aligned}
& =\frac{-8 \pm \sqrt{144}}{8} \\
& =\frac{-8+12}{8} \text { or } \frac{-8+12}{8} \\
x_{1}= & \frac{1}{2}, \quad x_{2}=-\frac{5}{2}
\end{aligned}
$$

Example 1-7: Solve $3 x^{2}+6 x+4=0$.
Solution: $\Delta=b^{2}-4 a c$

$$
\begin{aligned}
& =36-48 \\
& =-12
\end{aligned}
$$

$\Delta<0 \quad \Rightarrow \quad$ There is no solution.

EXERCISES

Perform the following operations. Simplify the result:
1-1) $\left(2^{3}\right)^{2}$

1-2) $\left(\frac{1}{16}\right)^{3 / 4}$

1-3) $72^{1 / 2}$

1-4) $\sqrt[3]{-125}$

1-5) $\sqrt[3]{\frac{8}{1000}}$

1-6) $(a+b)^{2}$

1-7) $(a+b)(a-b)$

1-8) $x^{3}-1$

1-9) $\frac{\sqrt{12}}{\sqrt{5}-\sqrt{3}}$

1-10) $x^{4}-100 y^{4}$

Find the equations of the following lines:
1-11) Passes through origin and has slope $m=\frac{1}{5}$.

1-12) Passes through the point $(-2,6)$ and has slope $m=3$.

1-13) Passes through the points $(-8,2)$ and ($-1,-2$).

1-14) Passes through $(0,-3)$ and parallel to the line $10 y-5 x=99$.

1-15) Passes through $(9,12)$ and perpendicular to the line $2 x+5 y=60$.

Find the domain and range of the following functions:
1-16) $f(x)=\sqrt{10-x}$

1-17) $f(x)=x^{2}+12 x+35$

1-18) $f(x)=8 x-x^{2}$

1-19) $f(x)=\frac{1}{x^{2}-6 x+9}$
1-20) $f(x)=\frac{3}{x-7}$

Solve the following quadratic equations:
1-21) $x^{2}-5 x-24=0$

1-22) $2 x^{2}+9 x-5=0$

1-23) $6 x^{2}-7 x+2=0$

1-24) $49 x^{2}-14 x+1=0$

1-25) $4 x^{2}+6 x+3=0$

1-26) $x^{2}-17 x=0$

1-27) $4 x^{2}-20 x+25=0$

1-28) $x^{2}-4 x+5=0$

1-29) $x^{2}-\frac{10}{3} x+1=0$

1-30) $x^{2}-2 x-1=0$

ANSWERS

1-1) $2^{3} \cdot 2^{3}=2^{6}=64$

1-2) $\left(2^{-4}\right)^{3 / 4}=2^{-3}=\frac{1}{8}$

1-3) $\sqrt{72}=\sqrt{36 \cdot 2}=6 \sqrt{2}$

1-4) $\left[(-5)^{3}\right]^{1 / 3}=-5$

1-5) $\frac{\sqrt[3]{8}}{\sqrt[3]{1000}}=\frac{2}{10}=0.2$

1-6) $a^{2}+2 a b+b^{2}$

1-7) $a^{2}-b^{2}$

1-8) $(x-1)\left(x^{2}+x+1\right)$

1-9) $\sqrt{15}+3$

1-10) $\left(x^{2}-10 y^{2}\right)\left(x^{2}+10 y^{2}\right)$

1-11) $y=\frac{1}{5} x$

1-12) $y=3 x+12$

1-13) $4 x+7 y+18=0$

1-14) $x-2 y=6$

1-15) $5 x-2 y=21$

1-16) Domain: $(-\infty, 10]$, range: $[0, \infty)$.

1-17) Domain: \mathbb{R}, range: $[-1, \infty)$.

1-18) Domain: \mathbb{R}, range: $(-\infty, 16)$.

1-19) Domain: $\mathbb{R} \backslash\{3\}, \quad$ range: $(0, \infty)$.

1-20) Domain: $\mathbb{R} \backslash\{7\}, \quad$ range: $(-\infty, 0) \cup(0, \infty)$.

1-21) $x_{1}=8, \quad x_{2}=-3$.

1-22) $x_{1}=\frac{1}{2}, \quad x_{2}=-5$.

1-23) $x_{1}=\frac{1}{2}, \quad x_{2}=\frac{2}{3}$.

1-24) $x_{1}=\frac{1}{7}$. (double root.)
$\mathbf{1 - 2 5)}$ There is no solution.

1-26) $x_{1}=0, \quad x_{2}=17$.

1-27) $x_{1}=\frac{5}{2}$. (double root.)

1-28) There is no solution.

1-29) $x_{1}=3, \quad x_{2}=\frac{1}{3}$.

1-30) $x_{1}=1+\sqrt{2}, \quad x_{2}=1-\sqrt{2}$.

