Math 111-3
 Exponential and Logarithmic Functions

Functions of the form

$$
f(x)=a^{x}
$$

where a is a positive constant (but $a \neq 1$) are called exponential functions. The domain is:

$$
\mathbb{R}=(-\infty, \infty)
$$

and the range is

$$
(0, \infty)
$$

Remember that:

- $a^{n}=a \cdot a \cdots a$
- $a^{-n}=\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}$
- $a^{1 / n}=\sqrt[n]{a}$
- $a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

The natural exponential function is:

$$
f(x)=e^{x}
$$

where $e=2.71828 \ldots$
Inverse Functions: If $f(g(x))=x$ and $g(f(x))=x$, the functions f and g are inverses of each other. For example, the inverse of $f(x)=2 x$ is $g(x)=\frac{x}{2}$.

Theorem: A function has an inverse if and only if it is one-to-one and onto.

Logarithmic Functions: The inverse of the exponential function $y=a^{x}$ is the logarithmic function with base a :

$$
y=\log _{a} x
$$

where $a>0, \quad a \neq 1$.

$$
a^{\log _{a} x}=\log _{a}\left(a^{x}\right)=x
$$

We will use:

- $\log x$ for $\log _{10} x$ (common logarithm)
- $\ln x$ for $\log _{e} x$ (natural logarithm)

We can easily see that,

$$
a^{x} \cdot a^{y}=a^{x+y} \Rightarrow \log _{a}(A B)=\log _{a} A+\log _{a} B
$$

As a result of this,

- $\log _{a}\left(\frac{A}{B}\right)=\log _{a} A-\log _{a} B$
- $\log _{a}\left(\frac{1}{B}\right)=-\log _{a} B$
- $\log _{a}\left(A^{r}\right)=r \log _{a} A$

Any logarithm can be expressed in terms of the natural logarithm:

$$
\log _{a}(x)=\frac{\ln x}{\ln a}
$$

Any exponential can be expressed in terms of the natural exponential:

$$
a^{x}=e^{x \ln a}
$$

EXERCISES

Simplify the following:
3-1) $\log 400$

3-2) $\log 288$

3-3) $\log _{9} 27$

3-4) $\log _{8} 16$

3-5) $\log _{2} 1250$

3-6) $\log _{3} \frac{\sqrt{3}}{81}$
3-7) $e^{2 x+5 \ln x}$

3-8) $\ln \frac{e}{\sqrt[3]{e}}$
3-9) $2^{3 x+4 \log _{2} x}$

3-10) $3^{2 \log _{9} x}$

3-11) $5^{\log _{25} x}$

3-12) $10^{1+\log (2 x)}$

Solve the following equations.
3-13) $5=(5 \sqrt{5})^{x}$

3-14) $\log _{x} 12=\frac{1}{2}$

3-15) $\log _{x} 77=-1$

3-16) $\log _{x} 2=3$

3-17) $\log _{x} 64=4$

3-18) $\log _{3} x=5$

3-19) $\log _{9}(18 x)=2$

3-20) $\log _{5} x=-\frac{1}{2}$

3-21) $\log (\log x)=0$

3-22) $\ln (\ln x)=1$

3-23) $2^{x}=100$

3-24) $2^{4 x+4}=8^{x-1}$

ANSWERS

3-1) $2+2 \log 2$

3-2) $2 \log 3+5 \log 2$

3-3) $\frac{3}{2}$
3-4) $\frac{4}{3}$

3-5) $1+4 \log _{2} 5$

3-6) $-\frac{7}{2}$

3-7) $x^{5} e^{2 x}$

3-8) $\frac{2}{3}$

3-9) $x^{4} 8^{x}$

3-10) x

3-11) \sqrt{x}

3-12) $20 x$

3-13) $x=\frac{2}{3}$

3-14) $x=144$

3-15) $x=\frac{1}{77}$

3-16) $x=2^{1 / 3}$

3-17) $x=2 \sqrt{2}$

3-18) $x=243$

3-19) $x=\frac{9}{2}$
3-20) $x=\frac{1}{\sqrt{5}}$

3-21) $x=10$

3-22) $x=e^{e}$

3-23) $x=\frac{2}{\log 2}$

3-24) $x=-7$

