Math 111-8

Curve Sketching

8.1 First Derivative Test

At a critical point, the derivative is zero or undefined. Let f be a continuous function and let $x=c$ be a critical point of it. Suppose f^{\prime} exists in some interval containing c except possibly at c.
f has a local extremum at c if and only if f^{\prime} changes sign at c.

- Sign change: - to $+\Rightarrow f(c)$ is a local minimum.
- Sign change: + to $-\Rightarrow f(c)$ is a local maximum.

Local Min.

At sharp points, derivative is not defined. The curve has two different tangents from left and right. But the function is defined.

Example 8-1: Find the intervals where $f(x)=2 x^{3}-9 x^{2}+5$ is increasing and decreasing. Then find all the local extrema of this function using first derivative test.

Solution: $f^{\prime}(x)=6 x^{2}-18 x=0$
$6 x(x-3)=0 \quad \Rightarrow \quad x=0 \quad$ or $\quad x=3$.
There are two critical points, 0 and 3 . Note that $f(0)=5$ and $f(3)=-22$.
x changes sign at 0 and $(x-3)$ changes sign at 3 . We can find the sign of $x(x-3)$ by multiplying these signs.

x	0			3	
$(x-3)$	-		-	0	
+					
$f^{\prime}=x(x-3)$	+	0	-	0	
f	increasing	decreasing	increasing		

Based on this table, we can see that the graph is roughly like this:

Therefore $(0,5)$ is local maximum and $(3,-22)$ is local minimum.

Example 8-2: Find the intervals where $f(x)=x^{\frac{4}{5}}$ is increasing and decreasing. Then find all the local extrema of this function using first derivative test.

Solution: Derivative gives:
$f^{\prime}(x)=\frac{4}{5} x^{-\frac{1}{5}}$
In other words: $f^{\prime}=\frac{4}{5 \sqrt[5]{x}}$
f^{\prime} is never zero. But it is undefined at $x=0$. This is the only critical point.

Note that $\sqrt[5]{x}$ is negative when x is negative.

x	0	
f^{\prime}	-	+
f	\searrow	\nearrow

Based on this table, we can see that the graph is roughly like this:

By first derivative test, $(0,0)$ is local minimum.

Example 8-3: Using first derivative test, find local extrema of

$$
f(x)=x^{4}-4 x^{3}-2 x^{2}+12 x
$$

Solution: $f^{\prime}(x)=4 x^{3}-12 x^{2}-4 x+12=0$. Using trial and error we find that $x=1$ is a solution, therefore:
$(x-1)\left(x^{2}-2 x-3\right)=0 \quad \Rightarrow \quad(x-1)(x+1)(x-3)=0$.
Critical points are $x=-1, \quad x=1$ and $x=3$. Note that $f(-1)=-9, \quad f(1)=7$ and $f(3)=-9$.

To find the sign of f^{\prime} over these intervals, we need a table:

x		-1	1			3
$(x+1)$	-	0	+		+	+
$(x-1)$	-		-	0	+	
$(x-3)$	-		-		-	0
	+					
f^{\prime}	-	0	+	0	-	0
f	\searrow	\nearrow	\searrow	\nearrow		

Based on the table, we obtain:

Therefore $(-1,-9)$ is local minimum, $(1,7)$ is local maximum, and $(3,-9)$ is local minimum.

8.2 Concavity

The graph of a differentiable function is concave up if f^{\prime} increasing, it is concave down if f^{\prime} decreasing.

Test for Concavity:

- If $f^{\prime \prime}(x)>0$, then f is concave up at x.
- If $f^{\prime \prime}(x)<0$, then f is concave down at x.

Inflection Point: An inflection point is a point where the concavity changes. In other words, if:

- f is continuous at $x=a$,
- $f^{\prime \prime}>0$ on the left of a and $f^{\prime \prime}<0$ on the right, or vice versa. then $x=a$ is an inflection point.

This means either $f^{\prime \prime}(a)=0$ or $f^{\prime \prime}(a)$ does not exist.

Examples:

Example 8-4: Determine the concavity of $f(x)=x^{3}$. Find inflection points. (If there is any.)

Solution: $f=x^{3}$

$$
\begin{aligned}
f^{\prime} & =3 x^{2} \\
f^{\prime \prime} & =6 x
\end{aligned}
$$

- For $x>0, f^{\prime \prime}>0 \Rightarrow f$ is concave up.
- For $x<0, f^{\prime \prime}<0 \Rightarrow f$ is concave down.
- $x=0$ is the inflection point.

x		0	
$f^{\prime \prime}$	-	0	+
f is:	concave down	concave up	

Shape of a graph based on first and second derivatives:

Increasing, Concave up.
$f^{\prime}<0, \quad f^{\prime \prime}>0$

Decreasing, Concave up.
$f^{\prime}>0, \quad f^{\prime \prime}<0$

Increasing, Concave down.
$f^{\prime}<0, \quad f^{\prime \prime}<0$

Decreasing, Concave down.

8.3 Curve Sketching

- Identify domain of f, symmetries, x and y intercepts. (if any)
- Find first and second derivatives of f.
- Find critical points, inflections points.
- Make a table and include all this information.
- Sketch the curve using the table.

Example 8-5: Sketch the graph of $f(x)=x^{3}+3 x^{2}-24 x$.
Solution: $\lim _{x \rightarrow \infty} f=+\infty, \quad \lim _{x \rightarrow-\infty} f=-\infty$

$$
\begin{aligned}
& f^{\prime}=3 x^{2}+6 x-24 \\
&=3(x+4)(x-2) \\
& f^{\prime}=0 \quad \Rightarrow \quad x=-4, \quad \text { and } \quad x=2 .
\end{aligned}
$$

These are the critical points.

$$
f^{\prime \prime}=6 x+6=0 \quad \Rightarrow \quad x=-1 .
$$

This is the inflection point.

Some specific points on the graph are:
$f(-4)=80, \quad f(-1)=26$.
$f(0)=0, \quad f(2)=-28$.

The equation $f(x)=0$ gives $x=0$ or $x^{2}+3 x-24=0$ in other words $x=\frac{-3 \pm \sqrt{105}}{2}$. Using a calculator we find $x_{1}=-6.6, x_{2}=3.6$ but it is possible to sketch the graph without these points. Putting all this information on a table, we obtain:

x	-4				-1	
f^{\prime}	+	0	-		-	0
+						
$f^{\prime \prime}$	-	-	0	+	+	
f	\nearrow	\searrow	\searrow	\nearrow		

Based on this table, we can sketch the graph as:

EXERCISES

Determine the intervals where the following functions are increasing and decreasing:

8-1) $f(x)=x^{3}-12 x-5$

8-2) $f(x)=16-4 x^{2}$

8-3) $f(x)=\frac{1}{(x-4)^{2}}$
8-4) $f(x)=\frac{x^{2}-3}{x-2}$

8-5) $f(x)=4 x^{5}+5 x^{4}-40 x^{3}$

8-6) $f(x)=x^{4} e^{-x}$

8-7) $f(x)=\frac{\ln x}{x}$

8-8) $f(x)=5 x^{6}+6 x^{5}-45 x^{4}$

8-9) $f(x)=x^{4}-2 x^{2}+1$

8-10) $f(x)=\frac{x}{x+1}$

Identify local maxima, minima and inflection points, then sketch the graphs of the following functions:

8-11) $f(x)=x^{3}-3 x^{2}-9 x+11$

8-12) $f(x)=-2 x^{3}+21 x^{2}-60 x$

8-13) $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$

8-14) $f(x)=(x-1)^{2}(x+2)^{3}$

8-15) $f(x)=x^{6}-6 x^{5}$

8-16) $f(x)=x^{3} e^{-x}$

8-17) $f(x)=e^{-x^{2}}$

8-18) $f(x)=\frac{x}{x^{2}+1}$

8-19) $f(x)=x \ln |x|$

8-20) $f(x)=-x^{4}+32 x^{2}$

ANSWERS

8-1) Increasing on $(-\infty,-2)$, decreasing on $(-2,2)$, increasing on $(2, \infty)$.

8-2) Increasing on $(-\infty, 0)$, decreasing on $(0, \infty)$.

8-3) Increasing on ($-\infty, 4$), decreasing on ($4, \infty$).

8-4) Increasing on $(-\infty, 1)$, decreasing on $(1,2) \cup(2,3)$, increasing on $(3, \infty)$.

8-5) Increasing on $(-\infty,-3)$, decreasing on $(-3,0) \cup(0,2)$, increasing on $(2, \infty)$.

8-6) Decreasing on $(-\infty, 0)$, increasing on $(0,4)$, decreasing on $(4, \infty)$.

8-7) Increasing on ($0, e$), decreasing on (e, ∞).

8-8) Decreasing on $(-\infty,-3)$, increasing on $(-3,0)$, decreasing on $(0,2)$, increasing on $(2, \infty)$.

8-9) Decreasing on $(-\infty,-1)$, increasing on $(-1,0)$, decreasing on $(0,1)$, increasing on $(1, \infty)$.

8-10) Increasing on $(-\infty,-1) \cup(-1, \infty)$.
(Blue dots denote inflection points, red dots local extrema.)

8-11)

8-12)

8-14)

8-17)

8-18)

