Math 111 – 8 Curve Sketching

8.1 First Derivative Test

At a critical point, the derivative is zero or undefined. Let f be a continuous function and let x = c be a critical point of it. Suppose f' exists in some interval containing c except possibly at c.

f has a local extremum at c if and only if f' changes sign at c.

- Sign change: to $+ \Rightarrow f(c)$ is a local minimum.
- Sign change: + to $\Rightarrow f(c)$ is a local maximum.

At sharp points, derivative is not defined. The curve has two different tangents from left and right. But the function is defined.

Example 8–1: Find the intervals where $f(x) = 2x^3 - 9x^2 + 5$ is increasing and decreasing. Then find all the local extrema of this function using first derivative test.

Solution: $f'(x) = 6x^2 - 18x = 0$

 $6x(x-3) = 0 \implies x = 0 \text{ or } x = 3.$

There are two critical points, 0 and 3. Note that f(0) = 5 and f(3) = -22.

x changes sign at 0 and (x - 3) changes sign at 3. We can find the sign of x(x - 3) by multiplying these signs.

x	() :	3		
(x-3)	—	- () +		
f' = x(x-3)	+ () — () +		
f	increasing	decreasing	increasing		

Based on this table, we can see that the graph is roughly like this:

Therefore (0,5) is local maximum and (3,-22) is local minimum.

Example 8–2: Find the intervals where $f(x) = x^{\frac{4}{5}}$ is increasing and decreasing. Then find all the local extrema of this function using first derivative test.

Solution: Derivative gives:

$$f'(x) = \frac{4}{5} x^{-\frac{1}{5}}$$

In other words: $f'=\frac{4}{5\sqrt[5]{x}}$

 f^\prime is never zero. But it is undefined at x=0. This is the only critical point.

Note that $\sqrt[5]{x}$ is negative when x is negative.

Based on this table, we can see that the graph is roughly like this:

By first derivative test, (0,0) is local minimum.

Example 8-3: Using first derivative test, find local extrema of

$$f(x) = x^4 - 4x^3 - 2x^2 + 12x$$

Solution: $f'(x) = 4x^3 - 12x^2 - 4x + 12 = 0$. Using trial and error we find that x = 1 is a solution, therefore:

$$(x-1)(x^2-2x-3) = 0 \quad \Rightarrow \quad (x-1)(x+1)(x-3) = 0.$$

Critical points are x = -1, x = 1 and x = 3. Note that f(-1) = -9, f(1) = 7 and f(3) = -9.

To find the sign of f' over these intervals, we need a table:

x	-1	L	1	3	
(x+1)	— () +	+	-	+
(x-1)	—	—	0 +	-	+
(x-3)	—	—	-	- 0	+
f'	- () +	0 -	- Ø	+
f	\searrow	\nearrow		Х	\nearrow

Based on the table, we obtain:

Therefore (-1, -9) is local minimum, (1, 7) is local maximum, and (3, -9) is local minimum.

8.2 Concavity

The graph of a differentiable function is concave up if f' increasing, it is concave down if f' decreasing.

Test for Concavity:

- If f''(x) > 0, then f is concave up at x.
- If f''(x) < 0, then f is concave down at x.

Inflection Point: An inflection point is a point where the concavity changes. In other words, if:

- f is continuous at x = a,
- f'' > 0 on the left of a and f'' < 0 on the right, or vice versa.

then x = a is an inflection point.

This means either f''(a) = 0 or f''(a) does not exist.

Examples:

Example 8–4: Determine the concavity of $f(x) = x^3$. Find inflection points. (If there is any.)

Solution: $f = x^3$ $f' = 3x^2$ f'' = 6x• For x > 0, $f'' > 0 \Rightarrow f$ is concave up. • For x < 0, $f'' < 0 \Rightarrow f$ is concave down.

• x = 0 is the inflection point.

Shape of a graph based on first and second derivatives:

8.3 Curve Sketching

- Identify domain of f, symmetries, x and y intercepts. (if any)
- Find first and second derivatives of f.
- Find critical points, inflections points.
- Make a table and include all this information.
- Sketch the curve using the table.

Example 8–5: Sketch the graph of $f(x) = x^3 + 3x^2 - 24x$.

Solution: $\lim_{x \to \infty} f = +\infty$, $\lim_{x \to -\infty} f = -\infty$ $f' = 3x^2 + 6x - 24$ = 3(x+4)(x-2) $f' = 0 \Rightarrow x = -4$, and x = 2. These are the critical points. $f'' = 6x + 6 = 0 \Rightarrow x = -1$.

This is the inflection point.

Some specific points on the graph are:

$$f(-4) = 80, \quad f(-1) = 26.$$

 $f(0) = 0, \quad f(2) = -28.$

The equation f(x) = 0 gives x = 0 or $x^2 + 3x - 24 = 0$ in other words $x = \frac{-3 \pm \sqrt{105}}{2}$. Using a calculator we find $x_1 = -6.6, x_2 = 3.6$ but it is possible to sketch the graph without these points. Putting all this information on a table, we obtain:

Based on this table, we can sketch the graph as:

EXERCISES

Determine the intervals where the following functions are increasing and decreasing:

8–1)
$$f(x) = x^3 - 12x - 5$$

8–2)
$$f(x) = 16 - 4x^2$$

8–3)
$$f(x) = \frac{1}{(x-4)^2}$$

8–4)
$$f(x) = \frac{x^2 - 3}{x - 2}$$

8–5)
$$f(x) = 4x^5 + 5x^4 - 40x^3$$

8–6)
$$f(x) = x^4 e^{-x}$$

8–7)
$$f(x) = \frac{\ln x}{x}$$

8–8)
$$f(x) = 5x^6 + 6x^5 - 45x^4$$

8–9)
$$f(x) = x^4 - 2x^2 + 1$$

8–10)
$$f(x) = \frac{x}{x+1}$$

Identify local maxima, minima and inflection points, then sketch the graphs of the following functions:

8–11)
$$f(x) = x^3 - 3x^2 - 9x + 11$$

8–12)
$$f(x) = -2x^3 + 21x^2 - 60x$$

8–13)
$$f(x) = 3x^4 + 4x^3 - 36x^2$$

8–14)
$$f(x) = (x-1)^2(x+2)^3$$

8–15)
$$f(x) = x^6 - 6x^5$$

8–16)
$$f(x) = x^3 e^{-x}$$

8–17) $f(x) = e^{-x^2}$

8–18)
$$f(x) = \frac{x}{x^2 + 1}$$

8–19)
$$f(x) = x \ln |x|$$

8–20)
$$f(x) = -x^4 + 32x^2$$

ANSWERS

8–1) Increasing on $(-\infty, -2)$, decreasing on (-2, 2), increasing on $(2, \infty)$.

8–2) Increasing on $(-\infty, 0)$, decreasing on $(0, \infty)$.

8–3) Increasing on $(-\infty, 4)$, decreasing on $(4, \infty)$.

8–4) Increasing on $(-\infty, 1)$, decreasing on $(1, 2) \cup (2, 3)$, increasing on $(3, \infty)$.

8–5) Increasing on $(-\infty, -3)$, decreasing on $(-3, 0) \cup (0, 2)$, increasing on $(2, \infty)$.

8–6) Decreasing on $(-\infty, 0)$, increasing on (0, 4), decreasing on $(4, \infty)$.

8–7) Increasing on (0, e), decreasing on (e, ∞) .

8–8) Decreasing on $(-\infty, -3)$, increasing on (-3, 0), decreasing on (0, 2), increasing on $(2, \infty)$.

8–9) Decreasing on $(-\infty, -1)$, increasing on (-1, 0), decreasing on (0, 1), increasing on $(1, \infty)$.

8–10) Increasing on $(-\infty, -1) \cup (-1, \infty)$.

(Blue dots denote inflection points, red dots local extrema.)

8–17)

8–20)

