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Chapter 1

Functions

Equations: We can perfom the same operation on both sides of

an equality:

8x− 2 = 5x+ 7 Add 2 to both sides

8x = 5x+ 9 Subtract 5x from both sides

3x = 9 Multiply both sides by 1
3

x = 3

Example 1–1: Solve the equation
2x

2x+ 5
=

3

4

Solution:
2x

2x+ 5
=

3

4

8x = 6x+ 15

2x = 15

x =
15

2

Example 1–2: Solve the equation
∣∣3x− 12

∣∣ = 27

Solution: Using the definition of absolute value, we get

3x− 12 = 27 or −3x+ 12 = 27

3x = 39 or −3x = 15

x = 13 or x = −5

Intervals:

� Closed interval:
[
a, b
]

= {x : a 6 x 6 b}

� Open interval:
(
a, b
)

= {x : a < x < b}

� Half-open interval:
(
a, b
]

= {x : a < x 6 b}

� Unbounded interval:
(
a, ∞

)
= {x : a < x}

We will use R to denote all real numbers, in other words the interval(
−∞, ∞

)
.
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Inequalities: Inequalities are similar to equations. We can add

the same quantity to both sides, but if we multiply by a negative

number, the direction of the inequality is reversed.

Example 1–3: Solve the inequality 7x− 5 6 30.

Solution:
7x− 5 6 23

7x 6 28

x 6 4

x ∈
(
−∞, 4

]
Example 1–4: Solve the inequality

∣∣x+ 10
∣∣ < 11.

Solution:
−11 < x+ 10 < 11

−21 < x < 1

x ∈
(
− 21, 1

)
Example 1–5: Solve the inequality

∣∣x+ 10
∣∣ > 11.

Solution:
x+ 10 > 11 or x+ 10 < −11

x > 1 or x < −21

x ∈
(
−∞, −21

)
or x ∈

(
1, ∞

)

Lines on the Plane:

x

y

O

∆x

∆y

x−intercept

y−intercept

Slope of a line is:

m =
∆y

∆x
=
y2 − y1
x2 − x1

x = 0 gives the y−intercept and y = 0 gives the x−intercept.

� Slope-intercept equation: y = mx+ n.

� Point-slope equation: y − y1 = m(x− x1).

If we are given two points on a line or one point and the slope, we

can find the equation of the line.

� If two lines are parallel: m1 = m2.

� If two lines are perpendicular: m1 ·m2 = −1.

The equation x = c gives a vertical line and y = c gives a horizontal

line.
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Example 1–6: Find the equation of the line passing through the

points (2, 9) and (4, 13).

Solution: Let’s find the slope first: m =
13− 9

4− 2
= 2

Now, let’s use the point-slope form of a line equation

using the point (2, 9):

(y − 9) = 2(x− 2)

y = 2x+ 5

If we use (4, 13), we will obtain the same result:

(y − 13) = 2(x− 4)

y = 2x+ 5

Example 1–7: Find the equation of the line passing through the

point (2, 4) and parallel to the line 3x+ 5y = 1.

Solution: If we rewrite the line equation as: y = − 3

5
x+

1

5

we see that m = − 3

5
.

Therefore: y − 4 = − 3

5
(x− 2)

y = − 3

5
x+

26

5

or 3x+ 5y = 26.

Example 1–8: Find the equation of the line passing through the

points (24, 0) and (8,−6).

Solution: The slope is:

m =
−6− 0

8− 24
=
−6

−16
=

3

8

Using point-slope equation, we find:

y − 0 =
3

8
(x− 24) ⇒ y =

3

8
x− 9

In other words: 3x− 8y = 72.

Example 1–9: Find the equation of the line passing through origin

and parallel to the line 2y − 8x− 12 = 0.

Solution: If we rewrite the line equation as:

y = 4x+ 6,

we see that m = 4. Therefore:

y − 0 = 4(x− 0)

y = 4x.

Note that a line through origin has zero intercept.



8 CHAPTER 1 - Functions

Function: A function f defined on a set D of real numbers is a

rule that assigns to each number x in D exactly one real number,

denoted by f(x).

For example:

f(x) = x2

f(x) = 7x+ 2

f(x) = |x|

f(x) =
1

x

Domain: The set D of all numbers for which f(x) is defined is

called the domain of the function f .

For example, consider the function f(x) = 4x2 + 5.

There’s no x value where f(x) is undefined so its domain is R.

Range: The set of all values of f(x) is called the range of f .

x2 > 0

4x2 > 0

4x2 + 5 > 5

So range of f(x) = 4x2 + 5 is:
[
5, ∞

)
.

The range and domain of a linear function f(x) = ax+ b is R.

Example 1–10: Find the domain of the function

f(x) =
1

x+ 8

Solution: Division by zero is undefined, in other words, it is not

possible to evaluate this function at the point x = −8.

Therefore the domain is: R \ {−8}.

We can also write this as:
(
−∞,−8

)
∪
(
− 8, ∞

)

Example 1–11: Find the domain of the function

f(x) =
√
x− 4

Solution: Square root of a negative number is undefined. (In this

course, we are not using complex numbers.) Therefore

x− 4 > 0 ⇒ x > 4

In other words, domain is:
[
4, ∞

)

Example 1–12: Find the domain of the function

f(x) =
1√
x− 4

Solution: This is similar to previous exercise, but the function is

not defined at x = 4. Therefore, the domain is:
(
4, ∞

)
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EXERCISES

Perform the following operations. Transform and simplify the result.

1–1)
(
23)2

1–2)

(
1

16

)3/4

1–3) 721/2

1–4) 3
√
−125

1–5)
3

√
8

1000

1–6)

√
48

49

1–7) (a+ b)2

1–8) (a+ b)(a− b)

1–9)
1√

5−
√

3

1–10)
12√
7− 1

− 12√
7 + 1

Perform the following operations. Transform and simplify the result.

1–11)
√
x2
√
x

1–12)
√
x3y

√
64xy9

1–13) x3 − 1

1–14)
(√

x2 + 4 + 3
)(√

x2 + 4− 3
)

1–15) x4 − 100y4

1–16)

(
x2 y1/2

x2/3 y1/6

)3

1–17) (3a− 2b)2

1–18) (a+ b)3

1–19)
2x

x2 − 4
+

5

x+ 2

1–20) 1− 1

1 +
1

x
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Solve the following equations and inequalities:

1–21) 3(x+ 7)− 2(3x− 4) = 14

1–22)
x

3
− x

5
=

7

30

1–23)
√
x2 + 16 = 5

1–24) |x− 2| = 12

1–25)
∣∣x− 7

∣∣ < 8

1–26)
∣∣2x+ 6

∣∣ 6 4

1–27)
∣∣5x− 10

∣∣ > 15

1–28)
∣∣12− 7x

∣∣ > 1

1–29)
∣∣x2 − 5

∣∣ < 2

1–30)
∣∣x2 − 5

∣∣ < 10

Find the equations of the following lines:

1–31) Passes through origin and has slope m =
1

5
.

1–32) Passes through the point (−2, 6) and has slope m = 3.

1–33) Passes through the points (−8, 2) and (−1,−2).

1–34) Passes through (0,−3) and parallel to the

line 10y − 5x = 99.

1–35) Passes through (9, 12) and perpendicular to the

line 2x+ 5y = 60.

Find the domain and range of the following functions:

1–36) f(x) =
√

10− x

1–37) f(x) = x2 + 12x+ 35

1–38) f(x) = 8x− x2

1–39) f(x) =
1

x2 − 6x+ 9

1–40) f(x) =
3

x− 7
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ANSWERS

1–1) 23 · 23 = 26 = 64

1–2)
(
2−4)3/4 = 2−3 =

1

8

1–3)
√

72 =
√

36 · 2 = 6
√

2

1–4)
[
(−5)3

]1/3
= −5

1–5)
3
√

8
3
√

1000
=

2

10
= 0.2

1–6)
4
√

3

7

1–7) a2 + 2ab+ b2

1–8) a2 − b2

1–9)

√
5 +
√

3

2

1–10) 4

1–11) x5/4

1–12) 8x2y5

1–13) (x− 1)(x2 + x+ 1)

1–14) x2 − 5

1–15) (x2 − 10y2)(x2 + 10y2)

1–16) x4y

1–17) 9a2 − 12ab+ 4b2

1–18) a3 + 3a2b+ 3ab2 + b3

1–19)
7x− 10

x2 − 4

1–20)
1

x+ 1
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1–21) x = 5

1–22) x =
7

4

1–23) x = ±3

1–24) x = 14 or x = −10

1–25) −1 < x < 15

1–26) −5 6 x 6 −1

1–27) x < −1 or x > 5

1–28) x 6
11

7
or x >

13

7

1–29)
√

3 < x <
√

7 or −
√

7 < x < −
√

3

1–30) −
√

15 < x <
√

15

1–31) y =
1

5
x

1–32) y = 3x+ 12

1–33) 4x+ 7y + 18 = 0

1–34) x− 2y = 6

1–35) 5x− 2y = 21

1–36) Domain:
(
−∞, 10

]
, range:

[
0,∞

)
.

1–37) Domain: R, range:
[
− 1,∞

)
.

1–38) Domain: R, range:
(
−∞, 16

)
.

1–39) Domain: R \ {3}, range:
(
0,∞

)
.

1–40) Domain: R \ {7}, range:
(
−∞, 0

)
∪
(
0,∞

)
.
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Parabolas

Quadratic Equations: The solution of the equation

ax2 + bx+ c = 0

is:

x =
−b±

√
∆

2a
where ∆ = b2 − 4ac

Here, we assume a 6= 0.

� If ∆ > 0, there are two distinct solutions.

� If ∆ = 0, there is a single solution.

� If ∆ < 0, there is no real solution.

(In this course, we only consider real numbers)

Example 2–1: Solve the equation x2 − 6x− 7 = 0.

Solution: We can factor this equation as: (x− 7)(x+ 1) = 0

Therefore x− 7 = 0 or x+ 1 = 0.

In other words, x = 7 or x = −1.

Alternatively, we can use the formula to obtain the same

result. Note that

a = 1, b = −6 and c = −7

x =
−b±

√
b2 − 4ac

2a

=
6±
√

36 + 28

2

=
6± 8

2

So x = 7 or x = −1.
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Example 2–2: Solve 8x2 − 6x− 5 = 0.

Solution: Using the formula, we obtain:

x =
6±
√

36 + 160

16
=

6± 14

16

So x =
5

4
or x = − 1

2
.

Alternatively, we can see directly that

(4x− 5)(2x+ 1) = 0, but this is not easy.

Example 2–3: Solve 9x2 − 12x+ 4 = 0.

Solution: If we can see that this is a full square

(3x− 2)2 = 0 we obtain x =
2

3
easily.

Alternatively, ∆ = (−12)2 − 4 · 9 · 4 = 0

(There is only one solution)

Example 2–4: Solve 3x2 + 6x+ 4 = 0.

Solution: ∆ = b2 − 4ac

= 36− 48

= −12

∆ < 0 ⇒ There is no solution.

Quadratic Functions:

A function of the form

f(x) = ax2 + bx+ c, a 6= 0

is called a quadratic function. The graph of a quadratic function is

a parabola.

� If a > 0, the arms of the parabola open upward.

� If a < 0, the arms of the parabola open downward.

The vertex of the parabola is maximum or minimum point.

The x−coordinate of the vertex is − b

2a
and the y−coordinate is

f

(
− b

2a

)
. An example is:

O x

y

9

−16

1 3 7

Vertex

y−intercept

The graph of y = x2 − 6x− 7
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Examples of some parabolas and their vertices:

O

x

y

y = x2

Vertex (0, 0)

O x

y

y = −x2

Vertex (0, 0)

O

x

y

y = x2 + 4

Vertex (0, 4)

O x

y

y = x2 − 4

Vertex (0,−4)
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O

x

y

y = (x− 3)2

Vertex (3, 0)

O

x

y

y = (x+ 3)2

Vertex (−3, 0)

Example 2–5: Sketch the graph of f(x) = x2 − 10x+ 16.

Solution: y−intercept: x = 0 ⇒ y = 16

Roots: x2 − 10x+ 16 = 0 ⇒ x = 2 or x = 8.

Vertex: − b

2a
=

10

2
= 5, f(5) = −9.

The coordinates of the vertex is (5,−9).

a > 0 ⇒ arms open upward. The graph is:

O

x

y

16

2 8

Vertex (5,−9)

We can obtain the same graph by writing the given function in the

form:

f(x) = (x− 5)2 − 9



CHAPTER 2 - Parabolas 17

EXERCISES

Solve the following quadratic equations:

2–1) x2 − 5x− 24 = 0

2–2) 2x2 + 9x− 5 = 0

2–3) 6x2 − 7x+ 2 = 0

2–4) 49x2 − 14x+ 1 = 0

2–5) 4x2 + 6x+ 3 = 0

2–6) x2 − 17x = 0

2–7) 4x2 − 20x+ 25 = 0

2–8) x2 − 4x+ 5 = 0

2–9) x2 − 10

3
x+ 1 = 0

2–10) x2 − 2x− 1 = 0

Find the vertex and x− and y− intercepts of the following parabolas.

Sketch their graphs:

2–11) y = x2 − 6x

2–12) y = −x2 + 12

2–13) y = x2 − 4x− 21

2–14) y = −x2 + 3x+ 4

2–15) y = x2 + 10x+ 25

2–16) y = 4x2 − 8x+ 3

2–17) y = 5x2 + 15

2–18) y = −(x− 4)2

2–19) y = x2 − 4x+ 5

2–20) y = −3x2 + 60x− 450
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ANSWERS

2–1) x1 = 8, x2 = −3.

2–2) x1 =
1

2
, x2 = −5.

2–3) x1 =
1

2
, x2 =

2

3
.

2–4) x1 =
1

7
. (double root.)

2–5) There is no solution.

2–6) x1 = 0, x2 = 17.

2–7) x1 =
5

2
. (double root.)

2–8) There is no solution.

2–9) x1 = 3, x2 =
1

3
.

2–10) x1 = 1 +
√

2, x2 = 1−
√

2.

2–11)

O x

y

−9

63

2–12)

O

x

y

12

−2
√

3 2
√

3
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2–13)

O

x

y

−21
−25

7−3 2

2–14)

O

x

y

4

6.25

−1 41.5

2–15)

O

x

y

25

−5

2–16)

O

x

y

3

1

10.5 1.5
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2–17)

O

x

y

15

2–18)

O x

y

−16

4

2–19)

O

x

y

5

1

2

2–20)

O x

y

−450

−150

10
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Exponential and Logarithmic Functions

Polynomials: A function of the form

p(x) = anx
n + · · ·+ a2x

2 + a1x+ a0

is called a polynomial of degree n. For example, 120x5 − 17x+
7

2
is a polynomial.

√
x, x−1,

1

1 + x
, x5/3 are NOT polynomials.

Rational Functions: The quotient of two polynomials is a rational

function f(x) =
p(x)

q(x)
. For example,

3x2 − 5

1 + 2x− 7x3

is a rational function.

Question: What is the domain of a polynomial? A rational

function?

Example 3–1: Sketch the functions y = x2 and y = x3 on the

same coordinate system.

Solution:

1

O 1

y = x2

y = x3

x

y
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Piecewise-Defined Functions: We may define a function using

different formulas for different parts of the domain. For example,

the absolute value function is:

|x| =

{
x x > 0

−x x < 0

x

y

O

Example 3–2: Find the formula of the function f(x):

x

y

O

f(x)

−2−4 2 4

1

Solution:

f(x) =



x+ 4

2
if x < −2

1 if −2 6 x 6 2

−x+ 4

2
if x > 2

Inverse Functions:

If f
(
g(x)

)
= x and g

(
f(x)

)
= x, the functions f and g are

inverses of each other.

For example, the inverse of f(x) = 2x+ 1 is:

f−1(x) = g(x) =
x− 1

2

One–to–one Functions: If f(x1) = f(x2) ⇒ x1 = x2 then

f is one-to one.

For example, f(x) = x3 is one-to one but g(x) = x2 is not, because

g(1) = g(−1).

Onto Functions: Let f : A→ B. If there exists an x ∈ A for all

y ∈ B such that f(x) = y then f is onto.

For example, f(x) = 2x+ 1 is onto but g(x) = |x| is not, because

there is no x such that g(x) = −2 or any other negative number.

Theorem: A function has an inverse if and only if it is one-to-one

and onto.

Example 3–3: Find the inverse of the function f(x) =
x− 2

x+ 1
on

the domain R \ {−1} and range R \ {1}.

Solution: y =
x− 2

x+ 1
⇒ yx+ y = x− 2

yx− x = −y − 2 ⇒ x(y − 1) = −y − 2

x = − y + 2

y − 1

In other words, f−1(x) = − x+ 2

x− 1
.
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Exponential Functions: Functions of the form

f(x) = ax

where a is a positive constant (but a 6= 1) are called exponential

functions. The domain is:

R = (−∞,∞)

and the range is

(0,∞)

Remember that:

� an = a · a · · · a

� a−n =
1

an
=

(
1

a

)n

� a1/n = n
√
a

� am/n = n
√
am = ( n

√
a )

m

The natural exponential function is:

f(x) = ex

where e = 2.71828 . . ..

−2 −1 1 2

2

4

6

y = 2x

y = 3x

y =

(
1

2

)x

x

y

For the exponential function f(x) = 2x,

f(6) = 64

f(5) = 32

f(1) = 2

f(0) = 1

f

(
1

2

)
=
√

2

Do not confuse this with the polynomial function g(x) = x2 because

g(6) = 36

g(5) = 25

g(1) = 1

g(0) = 0

g

(
1

2

)
=

1

4

Example 3–4: If we invest an amount A in the bank, and if the

rate of interest is 15% per year, how much money will we have

after n years?

Solution: We are multiplying by 1.15 every year, so: 1.15nA.

Example 3–5: A firm has C customers now. Every month, 30%

of the customers leave. How many remain after n months?

Solution: We are multiplying by 0.7 every month, so: 0.7nC.
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Logarithmic Functions: The inverse of the exponential function

y = ax is the logarithmic function with base a:

y = loga x

where a > 0, a 6= 1.

aloga x = loga(a
x) = x

We will use:

� log x for log10 x (common logarithm)

� lnx for loge x (natural logarithm)

y = ex

y = lnx

O

x

y

1

1

We can easily see that,

ax · ay = ax+y ⇒ loga(AB) = logaA+ logaB

As a result of this,

� loga

(
A

B

)
= logaA− logaB

� loga

(
1

B

)
= − logaB

� loga (Ar) = r logaA

Any logarithm can be expressed in terms of the natural logarithm:

loga(x) =
lnx

ln a

Any exponential can be expressed in terms of the natural exponen-

tial:

ax = ex ln a

Example 3–6: Simplify log 360.

Solution: First, we have to find factors of 360:

360 = 23 · 32 · 5

Now, we can use the properties of logarithms:

log 360 = log 23 + log 32 + log 5

= 3 log 2 + 2 log 3 + 1− log 2

= 1 + 2 log 2 + 2 log 3
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EXERCISES

Sketch the graphs of the following piecewise-defined functions:

3–1) f(x) =

{
2x if x < 5

10 if x > 5

3–2) f(x) =

{
x+ 3 if x < 4

x− 1 if x > 4

Are the following functions polynomials?

3–3) f(x) = 8x4 + 1

3–4) f(x) =
1− x
x

3–5) f(x) =
1

5
x+

1

3

3–6) f(x) = 5x5 − 3x2/3

Are the following functions one-to-one? Are they onto?

3–7) f(x) = 2x

3–8) f(x) = x3

3–9) f(x) = x4 + x2 + 1

3–10) f(x) = e2x

Find the inverse of the following functions.

3–11) f(x) = 3x− 2

3–12) f(x) =
x+ 2

5x+ 4

3–13) f(x) =
1

x

3–14) f(x) = x3 + 1
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Simplify the following:

3–15) log 400

3–16) log 288

3–17) log9 27

3–18) log8 16

3–19) log2 1250

3–20) log3

√
3

81

3–21) e2x+5 lnx

3–22) ln
e
3
√
e

3–23) 23x+4 log2 x

3–24) 32 log9 x

3–25) 5log25 x

3–26) 101+log(2x)

Solve the following equations.

3–27) 5 =
(
5
√

5
)x

3–28) logx 12 =
1

2

3–29) logx 77 = −1

3–30) logx 2 = 3

3–31) logx 64 = 4

3–32) log3 x = 5

3–33) log9(18x) = 2

3–34) log5 x = − 1

2

3–35) log(log x) = 0

3–36) ln(lnx) = 1

3–37) 2x = 100

3–38) 24x+4 = 8x−1
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ANSWERS

3–1)

O

x

y

5

10

3–2)

O

x

y

4

7

3

3–3) Yes

3–4) No

3–5) Yes

3–6) No

3–7) One-to-one and onto.

3–8) One-to-one and onto.

3–9) Not one-to-one and not onto.

3–10) One-to-one and not onto.

3–11) f−1(x) =
x+ 2

3

3–12) f−1(x) =
4x− 2

1− 5x

3–13) f−1(x) =
1

x

3–14) f−1(x) = 3
√
x− 1



28 CHAPTER 3 - Exponential and Logarithmic Functions

3–15) 2 + 2 log 2

3–16) 2 log 3 + 5 log 2

3–17)
3

2

3–18)
4

3

3–19) 1 + 4 log2 5

3–20) − 7

2

3–21) x5e2x

3–22)
2

3

3–23) x48x

3–24) x

3–25)
√
x

3–26) 20x

3–27) x =
2

3

3–28) x = 144

3–29) x =
1

77

3–30) x = 21/3

3–31) x = 2
√

2

3–32) x = 243

3–33) x =
9

2

3–34) x =
1√
5

3–35) x = 10

3–36) x = ee

3–37) x =
2

log 2

3–38) x = −7



Chapter 4

Limits

We say that f(x) has the limit L at x = a if f(x) gets as close to

L as we like, when x approaches a. (without getting equal to a)

We write this as:

lim
x→ a

f(x) = L

Example 4–1: Investigate the limit

lim
x→ 1

x2 − 1

x− 1

Solution: x f

0.9 1.9

0.99 1.99

0.999 1.999
...

...

x f

1.1 2.1

1.01 2.01

1.001 2.001
...

...

These results suggest that the limit is 2.

Actually, the function can be written as:

f(x) =


x+ 1 if x 6= 1

undefined if x = 1

Its graph is:

x

y

O 1

2
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Limit Laws: If both of the limits

lim
x→ a

f(x) = L and

lim
x→ a

g(x) = M

exist, then:

� lim
x→ a

f ± g = L±M

� lim
x→ a

fg = LM

� lim
x→ a

f

g
=

L

M
( if M 6= 0)

� lim
x→ a

n
√
f =

n
√
L

� lim
x→ a

f
(
g(x)

)
= f(M)

(If f is continuous at M)

Example 4–2: Evaluate the limit lim
x→ 2

3

x− 2
(if it exists):

Solution: As x approaches 2, the function 3
x−2 gets larger and

larger without any bound. Therefore the limit does not

exist. (Limit DNE.)

Example 4–3: Evaluate the following limit (if it exists):

lim
x→−5

x2 + 6x+ 5

x2 + 7x+ 10

Solution: lim
x→−5

x2 + 6x+ 5

x2 + 7x+ 10
= lim

x→−5

(x+ 5)(x+ 1)

(x+ 5)(x+ 2)

= lim
x→−5

(x+ 1)

(x+ 2)

=
4

3

Example 4–4: Evaluate the following limit (if it exists):

lim
x→ 0

x3 − 64

x− 4

Solution: lim
x→ 0

x3 − 64 = −64

lim
x→ 0

x− 4 = −4

Using limit laws, we obtain:

lim
x→ 0

x3 − 64

x− 4
=
−64

−4
= 16
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Example 4–5: Evaluate the limit lim
x→ 4

x3 − 64

x− 4
if it exists.

Solution: This question is different.

Although the limit lim
x→ 4

x− 4 exists, it is zero, so we can

NOT divide limit of the numerator by the limit of the

denominator.

We have to use factorization:

x3 − 64 = (x− 4)(x2 + 4x+ 16)

lim
x→ 4

x3 − 64

x− 4
= lim

x→ 4

(x− 4)(x2 + 4x+ 16)

x− 4

= lim
x→ 4

(x2 + 4x+ 16)

= 16 + 16 + 16

= 48

Example 4–6: Evaluate the limit (if it exists):

lim
x→ 5

1

|x− 5|

Solution:
1

|x− 5|
increases without bounds as x→ 5.

Therefore limit does not exist.

Example 4–7: Evaluate the limit (if it exists):

lim
x→−3

x2 + 4x+ 3

x2 + 5x+ 6

Solution: lim
x→−3

x2 + 4x+ 3

x2 + 5x+ 6
= lim

x→−3

(x+ 3)(x+ 1)

(x+ 3)(x+ 2)

= lim
x→−3

(x+ 1)

(x+ 2)

= 2

Example 4–8: Evaluate the limit (if it exists)

lim
x→ 49

√
x− 7

x− 49

Solution: lim
x→ 49

√
x− 7

x− 49
= lim

x→ 49

√
x− 7

x− 49
·
√
x+ 7√
x+ 7

= lim
x→ 49

x− 49

(x− 49) (
√
x+ 7)

= lim
x→ 49

1√
x+ 7

=
1

14
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Example 4–9: Evaluate the limit (if it exists):

lim
x→ 2

x3 − 7x+ 6

x2 − 5x+ 6

Solution: This is of the form
0

0
, so, both the numerator and the

denominator contain (x− 2).

Using polynomial division, we obtain:

lim
x→ 2

(x− 2)(x2 + 2x− 3)

(x− 2)(x− 3)

For x 6= 2, this is:

= lim
x→ 2

(x2 + 2x− 3)

(x− 3)
=

5

−1
= −5

Example 4–10: Evaluate the limit (if it exists)

lim
x→ 8

2− 3
√
x

8− x

Solution: Using the substitution u = 3
√
x we obtain:

lim
x→ 8

2− 3
√
x

8− x
= lim

u→ 2

2− u
8− u3

= lim
u→ 2

2− u
(2− u)(4 + 2u+ u2)

= lim
u→ 2

1

4 + 2u+ u2

=
1

12

Example 4–11: Evaluate the limit (if it exists):

lim
x→ 3

x2 − 9

x2 − 6x+ 9

Solution: = lim
x→ 3

(x− 3)(x+ 3)

(x− 3)2
= lim

x→ 3

(x+ 3)

(x− 3)

Limit does not exist.

Example 4–12: Evaluate the following limit (if it exists):

lim
x→ 0

√
9 + 12x− 3

x

Solution: Multiply both numerator and denominator by the

conjugate of the numerator:

lim
x→ 0

√
9 + 12x− 3

x
= lim

x→ 0

√
9 + 12x− 3

x
·
√

9 + 12x+ 3√
9 + 12x+ 3

= lim
x→ 0

9 + 12x− 9

x
(√

9 + 12x+ 3
)

= lim
x→ 0

12√
9 + 12x+ 3

= 2
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EXERCISES

Evaluate the following limits (if they exist):

4–1) lim
x→ 2

x3 − 8

x− 2

4–2) lim
x→−4

x2 + 11x+ 28

x2 + 12x+ 32

4–3) lim
x→ 5

x2 − 25

x2 − 10x+ 25

4–4) lim
x→ 1

x3 − x2 − x+ 1

x2 − x

4–5) lim
x→ 3

x4 − 81

x3 − 27

4–6) lim
x→ 0

√
x+ 16− 4

x

4–7) lim
x→ 3

x− 3√
x+ 6− 3

4–8) lim
x→ 64

√
x− 8

x− 64

4–9) lim
x→ 0

√
2x+ 1− 3

x

4–10) lim
x→ 7

√
4x+ 8− 6

x− 7

Evaluate the following limits (if they exist):

4–11) lim
x→∞

x(x2 − 5x+ 14)

7− 4x3

4–12) lim
x→∞

3x2 + 12x+ 9)

(x2 − 1)(x2 + 1)

4–13) lim
x→∞

2 + 3x− 4x4
√
x
(
1− 17x+ 8x3

)
4–14) lim

x→∞

√
x2 + 6x− x

4–15) lim
x→∞

√
x2 + 4x−

√
x2 − 10x+ 1

4–16) lim
x→∞

x4 − 16

(2x− 1)(2x+ 1)(x2 + 1)

4–17) lim
x→∞

√
x2 − 12x+ 24−

√
x2 + 10x+ 5

4–18) lim
x→∞

1

2x−
√

4x2 − 5x+ 6

4–19) lim
x→ 3

x2 − 9

x2 − 7x+ 12

4–20) lim
x→ 3

x2 − 9(
x− 3

)2
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Evaluate the following limits (if they exist):

4–21) lim
x→ 3

(
x− 3

)2
x2 − 9

4–22) lim
x→ 1

x2 − 9

x− 3

4–23) lim
x→ 0

|x|
x

4–24) lim
x→ 1

1

x2 − 1

4–25) lim
x→ 1

x3 − 1

x4 − 1

4–26) lim
x→ 4

2−
√
x

4− x

4–27) lim
x→ 0

x4 − 5x2 + 12x+ 7

5x2 + 6

4–28) lim
x→ 2

x2 − 7x+ 10

x2 − 5x+ 6

4–29) lim
x→ 4

x2 − 7x+ 10

x2 − 5x+ 6

4–30) lim
x→ 6

x2 − 5x+ 4

x− 6

Evaluate the following limits (if they exist):

4–31) lim
x→ 0

√
1 + x−

√
1− x

x

4–32) lim
x→−2

(
x+ 2

)2
x4 − 16

4–33) lim
x→ 3

√
x+ 1− 2

x2 − 9

4–34) lim
x→ 1

1−
√
x

1− 3
√
x

4–35) lim
x→ c

x4 − c4

x3 − c3

4–36) lim
x→ 0

x√
a+ bx−

√
a− cx

4–37) lim
x→ 1

xn − 1

x− 1

4–38) lim
x→∞

1

ln(x2)

4–39) lim
x→∞

8ex

4 + 5ex

4–40) lim
x→∞

√
2x2 − 1−

√
x2 + 1
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ANSWERS

4–1) 12

4–2)
3

4

4–3) Limit DNE.

(Limit does not exist.)

4–4) 0

4–5) 4

4–6)
1

8

4–7) 6

4–8)
1

16

4–9) Limit DNE.

4–10)
1

3

4–11) − 1

4

4–12) 0

4–13) −∞

4–14) 3

4–15) 7

4–16)
1

4

4–17) −11

4–18)
4

5

4–19) −6

4–20) Limit DNE.
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4–21) 0

4–22) 4

4–23) Limit DNE.

4–24) Limit DNE.

4–25)
3

4

4–26)
1

4

4–27)
7

6

4–28) 3

4–29) −1

4–30) Limit DNE.

4–31) 1

4–32) 0

4–33)
1

24

4–34)
3

2

4–35)
4

3
c

4–36)
2
√
a

b+ c

4–37) n

4–38) 0

4–39)
8

5

4–40) ∞
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One Sided Limits, Continuity

One Sided Limits: If x approaches a from right, taking values

larger than a only, we denote this by x→ a+. If f(x) approaches

L as x→ a+, then we say that L is the right-hand limit of f at a.

lim
x→ a+

f(x) = L

We define the left-hand limit of f at a similarly:

lim
x→ a−

f(x) = L

Theorem: The limit lim
x→ a

f(x) = L exists if and only if both one

sided limits

lim
x→ a+

f(x) and lim
x→ a−

f(x)

exist and are equal to L.

Example 5–1: Consider the function

f(x) =

{
2x− 1 if x < 1

5x− 2 if x > 1

Find the limits lim
x→ 1−

f(x), lim
x→ 1+

f(x) and lim
x→ 1

f(x).

Solution: lim
x→ 1−

f(x) = lim
x→ 1−

2x− 1 = 1

lim
x→ 1+

f(x) = lim
x→ 1+

5x− 2 = 3

lim
x→ 1−

f(x) 6= lim
x→ 1+

f(x) therefore lim
x→ 1

f(x)

does not exist.
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Example 5–2: Find the limits lim
x→ 3+

f(x) and lim
x→ 3−

f(x) and

graph the function:

f(x) =
4x− 12

|x− 3|

Solution: As x→ 3+, x− 3 > 0 therefore |x− 3| = x− 3 and

lim
x→ 3+

f(x) = lim
x→ 3+

4x− 12

x− 3
= 4

Similarly,

lim
x→ 3−

f(x) = lim
x→ 3−

4x− 12

−(x− 3)
= −4

x

y

O 3

4

−4

f(x)

We can see that left and right limits exist at x = 3.

But the limit lim
x→ 3

f(x) does NOT exist.

Also, note that f(3) is undefined.

Example 5–3: Let f(x) =


2− x2 if x < 0

7 if x = 0

ex + e−x if x > 0

Find the limits lim
x→ 0−

f(x), lim
x→ 0+

f(x) and lim
x→ 0

f(x).

Solution: lim
x→ 0−

f(x) = lim
x→ 0−

2− x2 = 2

lim
x→ 0+

f(x) = lim
x→ 0+

ex + e−x = 2

lim
x→ 0−

f(x) = lim
x→ 0+

f(x) = 2 therefore lim
x→ 0

f(x) = 2.

(Note that the function value f(0) = 7 does not have

any effect on the limit.)

Example 5–4: Find the limit lim
x→ 0+

lnx if it exists.

Solution: Checking the graph of f(x) = ln x we see that:

lim
x→ 0+

lnx = −∞

Note that the question lim
x→ 0

lnx would be meaningless.



CHAPTER 5 - One Sided Limits, Continuity 39

Example 5–5: Find the limits based on the function f(x) in the

figure: (If they exist.)

x

y

3 6−3−6 O

1

3

y = f(x)

a) lim
x→−6−

f(x), lim
x→−6+

f(x), lim
x→−6

f(x).

b) lim
x→−3−

f(x), lim
x→−3+

f(x), lim
x→−3

f(x).

c) lim
x→ 0−

f(x), lim
x→ 0+

f(x), lim
x→ 0

f(x).

d) lim
x→ 3−

f(x), lim
x→ 3+

f(x), lim
x→ 3

f(x).

e) lim
x→ 6−

f(x), lim
x→ 6+

f(x), lim
x→ 6

f(x).

Solution:

a) 0, 0, 0.

b) 1, 1, 1.

c) 3, 2, does not exist.

d) 0, 0, 0.

e) −∞, ∞, does not exist.

Example 5–6: Evaluate the limit (if it exists)

lim
x→ 8+

x2 − 10x+ 16√
x− 8

Solution: Note that square root of a negative number is not

defined, so x should not take values less than 8.

Therefore the question

lim
x→ 8

x2 − 10x+ 16√
x− 8

would be meaningless.

Now if we factor x2 − 10x+ 16 as:

x2 − 10x+ 16 = (x− 8)(x− 2)

=
√
x− 8

√
x− 8 (x− 2)

we obtain:

lim
x→ 8+

x2 − 10x+ 16√
x− 8

= lim
x→ 8+

√
x− 8

√
x− 8 (x− 2)√
x− 8

= lim
x→ 8+

√
x− 8 (x− 2)

= 0
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Continuity: We say that f is continuous at a if

lim
x→ a

f(x) = f(a)

In other words:

� f must be defined at a.

� lim
x→ a

f(x) must exist.

� The limit must be equal to the function value.

Example 5–7: Determine the points where f(x) is discontinuous:

x

y

1 2 3−1−2−3

y = f(x)

Solution: f(x) is discontinuous at:

� x = −2, limit and function value are different.

� x = 0, limit does not exist.

� x = 1, function is undefined.

� x = 2, limit does not exist.

Example 5–8: Let f(x) =


2x2 + a if x < 2

b if x = 2

3x− 2 if x > 2

Find a and b if f(x) is continuous at x = 2.

Solution: lim
x→ 2−

f(x) = 8 + a and lim
x→ 2+

f(x) = 4.

If f is continuous at x = 2, then

lim
x→ 2−

f(x) = lim
x→ 2+

f(x) = f(2)

⇒ 8 + a = b = 4

We find a = −4, b = 4.

Example 5–9: Let f(x) = 2 + 12x− x3 + 20x4. Find the points

where f(x) is discontinuous.

Solution: The given function is a polynomial. A polynomial func-

tion is continuous at all points.

Example 5–10: Let f(x) =
3x− 2

x2 + 4
. Find the points where f(x)

is discontinuous.

Solution: This is a rational function. A rational function is discon-

tinuous only at the points where denominator is zero.

But the equation

x2 + 4 = 0

has no solutions. This means there is no discontinuity.

In other words f(x) is continuous on R.
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Example 5–11: Let f(x) =
x− 2

x2 − 7x+ 10
.

Find the points where f(x) is discontinuous.

Solution: This is a rational function. So:

x2 − 7x+ 10 = 0 ⇒ x = 2, x = 5

f(x) is discontinuous at x = 2 and x = 5.

Example 5–12: Let f(x) =


log
(x

2
+ b
)

if x < 8

x

(√
x− 8 +

1

4

)
if x > 8

Find b if f(x) is continuous at x = 8.

Solution: lim
x→ 8+

f(x) = 2

lim
x→ 8−

f(x) = log(4 + b)

If f is continuous, these limits must be equal.

log(4 + b) = 2

4 + b = 100

b = 96

EXERCISES

5–1) Find the limits based on the figure:

x

y

1 2 3−1−2−3

1

2

−1

−2

y = f(x)

a) lim
x→−2−

f(x), lim
x→−2+

f(x), lim
x→−2

f(x).

b) lim
x→−1−

f(x), lim
x→−1+

f(x), lim
x→−1

f(x).

c) lim
x→ 0−

f(x), lim
x→ 0+

f(x), lim
x→ 0

f(x).

d) lim
x→ 1−

f(x), lim
x→ 1+

f(x), lim
x→ 1

f(x).

e) lim
x→ 2−

f(x), lim
x→ 2+

f(x), lim
x→ 2

f(x).

f) lim
x→ 3−

f(x), lim
x→ 3+

f(x), lim
x→ 3

f(x).

5–2) Find the points where f(x) of previous question is discontin-

uous.
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Evaluate the following limits: (If they exist)

5–3) lim
x→ 7−

2

x− 7

5–4) lim
x→ 7+

2

x− 7

5–5) lim
x→ 7−

|x− 7|
x− 7

5–6) lim
x→ 7+

|x− 7|
x− 7

5–7) lim
x→ 3+

√
x− 3

x+ 3

5–8) lim
x→ 0+

√
16 + 3x− 4

x

5–9) lim
x→−2+

|x2 − 4|
x+ 2

5–10) lim
x→−2−

|x2 − 4|
x+ 2

5–11) lim
x→ 0+

2x2 + 3x|x|
x|x|

5–12) lim
x→ 0−

2x2 + 3x|x|
x|x|

Find all the discontinuities of the following functions:

5–13) f(x) =
x2 − 2

x2 − 4

5–14) f(x) =
|x− a|
x− a

5–15) f(x) =
x2 − 5x+ 6

x2 − 4x+ 3

5–16) f(x) =
1

e2x − e3x

5–17) f(x) =
x− 5

x2 − 25

5–18) f(x) =
1

1− |x|

5–19) f(x) =

{
−1 + x if x 6 0

1 + x2 if x > 0

5–20) f(x) =


12x− 20 if x < 2

8 if x = 2

x2 if x > 2
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Find the values of constants that will make the following functions

continuous everywhere:

5–21) f(x) =


a+ bx2 if x < 0

b if x = 0

2 + e−x if x > 0

5–22) f(x) =

 cx2 − 2 if x 6 2

x

c
if x > 2

5–23) f(x) =

{
x2 − c2 if x 6 1

(x− c)2 if x > 1

5–24) f(x) =

{
eax if x 6 0

ln
(
b+ x2

)
if x > 0

ANSWERS

5–1)

a) 1, −1, Does Not Exist.

b) 0, 0, 0.

c) 1, 1, 1.

d) 0, −2, DNE.

e) −1, 1, DNE.

f) 2, 2, 2.

5–2)

x = −2.

x = 0.

x = 1.

x = 2.
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5–3) −∞

5–4) ∞

5–5) −1

5–6) 1

5–7) 0

5–8)
3

8

5–9) 4

5–10) −4

5–11) 5

5–12) 1

5–13) x = 2 and x = −2.

5–14) x = a.

5–15) x = 1, x = 3.

5–16) x = 0.

5–17) x = −5, x = 5.

5–18) x = 1 and x = −1.

5–19) x = 0.

5–20) x = 2.

5–21) a = b = 3

5–22) c = 1, or c = − 1

2

5–23) c = 0, or c = 1

5–24) b = e, a is arbitrary.
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Derivatives

Definition and Notation: The derivative of the function f(x) is

the function f ′(x) defined by

f ′(x) = lim
h→ 0

f(x+ h)− f(x)

h

Or, equivalently: f ′(x) = lim
a→x

f(x)− f(a)

x− a
We can think of the derivative as

� The rate of change of a function f , or

� The slope of the curve of y = f(x).

We will use y′, f ′(x),
dy

dx
,

d

dx
f(x) to denote derivatives and

f ′(a),
dy

dx

∣∣∣∣
x=a

to denote their values at a certain point.

Note that derivative is a function, its value at a point is a number.

Higher Order Derivatives: We can find the derivative of the

derivative of a function. It is called second derivative and denoted

by:

y′′, f ′′(x),
d2y

dx2
.

For third derivative, we use f ′′′(x) but for fourth and higher deriva-

tives, we use the notation f (4)(x), f (5)(x) etc.

Example 6–1: Let f(x) = 7x3 − 18x. Find f ′(x), f ′′(x), f ′′′(x)

and f (4)(x).

Solution: f ′(x) = 21x2 − 18

f ′′(x) = 42x

f ′′′(x) = 42

f (4)(x) = 0
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Differentiation Formulas: Using the definition of derivative, we

obtain:

� Derivative of a constant is zero, i.e.

dc

dx
= 0

� Derivative of f(x) = x is 1:

d

dx
x = 1

� Derivative of f(x) = x2 is 2x:

d

dx
x2 = 2x

� Derivative of f(x) = xn is:

d

dx
xn = nxn−1

� Derivative of f(x) =
√
x is:

d

dx

√
x =

1

2
√
x

� If f is a function and c is a constant, then

(cf)′ = cf ′

� If f and g are functions, then

(f + g)′ = f ′ + g′

Example 6–2: Evaluate the derivative of f(x) =
7x3 − 18x

x
.

Solution: First we have to simplify:

f(x) = 7x2 − 18

Then we use the differentiation rules:

f ′(x) = 14x

Example 6–3: Find the equation of the tangent line to the graph

of f(x) = x2 at the point (1, 1).

Solution: f ′(x) = 2x ⇒ m = f ′(1) = 2

Using point slope equation
(
y − y0 = m(x − x0)

)
we

find the equation of the tangent line as:

(y − 1) = 2(x− 1) ⇒ y = 2x− 1

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1

1

2

3 y = x2

y = 2x− 1

x

y
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Differentiation Rules:

Product Rule: If f and g are differentiable at x, then fg is

differentiable at x and

d

dx

(
fg
)

=
df

dx
g + f

dg

dx

or more briefly: (
fg
)′

= f ′g + fg′

Example 6–4: Find the derivative of f(x) = (x4 +14x)(7x3 +17)

Solution: f ′(x) = (4x3 + 14)(7x3 + 17) + (x4 + 14x) 21x2

Reciprocal Rule: If f is differentiable at x and if f(x) 6= 0 then:(
1

f

)′
=
−f ′

f 2

Example 6–5: Using the reciprocal rule, find the derivative of

f(x) =
1

xn
.

Solution: f ′(x) =
−nxn−1

x2n
= − n

xn+1
= −nx−n−1

Example 6–6: Find the derivative of f(x) =
1

8x2 + 12x+ 1
.

Solution: f ′(x) = − 16x+ 12

(8x2 + 12x+ 1)2

Quotient Rule: If f and g are differentiable at x, and g(x) 6= 0

then
f

g
is differentiable at x:

(
f

g

)′
=
f ′g − g′f

g2

Example 6–7: Find the derivative of f(x) =
2x+ 3

5x2 + 7
.

Solution: f ′(x) =
2(5x2 + 7)− 10x (2x+ 3)

(5x2 + 7)2

=
−10x2 − 30x+ 14

(5x2 + 7)2

Example 6–8: Find the derivative of f(x) =
1

x3 + x
.

Solution: The quotient rule gives:

f ′(x) =
0 · (x3 + x)− (3x2 + 1) · 1

(x3 + x)2

= − 3x2 + 1

(x3 + x)2

Alternatively, we can use reciprocal rule:

f ′(x) =
−(x3 + x)′

(x3 + x)2

= − 3x2 + 1

(x3 + x)2
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Exponentials and Logarithms: The derivatives of exponential

and logarithmic functions are

d

dx
ex = ex and

d

dx
lnx =

1

x

ex is the only nonzero function whose derivative is itself.

Example 6–9: Find the derivative of f(x) = x3ex.

Solution: Using product rule,

f ′(x) = 3x2ex + x3ex

Example 6–10: Find the derivative of f(x) = ex lnx.

Solution: Using product rule,

f ′(x) = ex lnx+
ex

x

Example 6–11: Find the derivative of f(x) = e−x.

Solution: We know that e−x =
1

ex
. Using reciprocal rule,

f ′(x) =
−(ex)′

(ex)2

= − ex

e2x

= −e−x

Example 6–12: Find the derivative of

f(x) =
x4

ex − x2

Solution: Using quotient rule,

f ′(x) =
4x3(ex − x2)− (ex − 2x)x4

(ex − x2)2

=
4x3ex − 4x5 − x4ex + 2x5

(ex − x2)2

=
(4x3 − x4)ex − 2x5

(ex − x2)2

Example 6–13: Find the derivative of

f(x) =
1

x− ex + lnx

Solution: Using quotient rule,

f ′(x) =
0−

(
1− ex + 1

x

)
(x− ex + lnx)2

= −
1− ex + 1

x

(x− ex + lnx)2

= − x− xex + 1

x(x− ex + lnx)2
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EXERCISES

Evaluate the derivatives of the following functions:

6–1) f(x) = 1−
√
x

6–2) f(x) = 4 + 3x− 12x3

6–3) f(x) = x−1 + 4x−2

6–4) f(x) =
1
4
√
x

6–5) f(x) =
1

x
− 2

x2

6–6) f(x) = 20x−4 + 4x1/4

6–7) f(x) =
x3 − x√

x

6–8) f(x) =
2x4 − x3 − 1

x

6–9) f(x) = (x2 + 2)(x2 − 3)

6–10) f(x) =
x

x2 + 4

6–11) f(x) =
x2 + 12

5x− 2

6–12) f(x) =
x3/2 + x−1/2

√
x+

1√
x

Evaluate the derivatives of the following functions:

6–13) f(x) = x12ex

6–14) f(x) = x2 ln
(
x3
)

6–15) f(x) =
5x

lnx

6–16) f(x) =
ex

1 + x2

6–17) f(x) =
1

1 + 2x+ 3ex

6–18) f(x) =
1

ex + 2 lnx

6–19) f(x) = x4ex lnx

6–20) f(x) =
(
x+ ex

)(
x2 + lnx

)
6–21) f(x) =

4x2 − 5x

2ex − 3x

6–22) f(x) =
1

ln
(
4x
)

6–23) f(x) = exexex

6–24) f(x) =
2− 3 lnx

5 lnx+ 1
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ANSWERS

6–1) f ′(x) =
−1

2
√
x

6–2) f ′(x) = 3− 36x2

6–3) f ′(x) = −x−2 − 8x−3

6–4) f ′(x) = − 1

4
x−5/4

6–5) f ′(x) = − 1

x2
+

4

x3

6–6) f ′(x) = −80x−5 + x−3/4

6–7) f ′(x) =
5

2
x3/2 − 1

2
x−1/2

6–8) f ′(x) = 6x2 − 2x+
1

x2

6–9) f ′(x) = 4x3 − 2x

6–10) f ′(x) =
4− x2

(x2 + 4)2

6–11) f ′(x) =
5x2 − 4x− 60

(5x− 2)2

6–12) f ′(x) =
x2 + 2x− 1

(x+ 1)2

6–13) f ′(x) = 12x11ex + x12ex

6–14) f ′(x) = 6x lnx+ 3x

6–15) f ′(x) =
5 lnx− 5

ln2 x

6–16) f ′(x) =
ex(1 + x2 − 2x)

(1 + x2)2

6–17) f ′(x) = − 2 + 3ex

(1 + 2x+ 3ex)2

6–18) f ′(x) = −
ex + 2

x

(ex + 2 lnx)2

6–19) f ′(x) = x3ex
(
4 lnx+ x lnx+ 1

)
6–20) f ′(x) =

(
1 + ex

)(
x2 + lnx

)
+
(
x+ ex

)(
2x+

1

x

)

6–21) f ′(x) =
(8x− 5)(2ex − 3x)− (2ex − 3)(4x2 − 5x)

(2ex − 3x)2

6–22) f ′(x) = − 1

x ln2
(
4x
)

6–23) f ′(x) = 3e3x

6–24) f ′(x) = − 13(
5 lnx+ 1

)2
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Chain Rule

Chain Rule: If f and g are differentiable then f(g(x)) is also

differentiable and [
f
(
g(x)

)]′
= f ′

(
g(x)

)
· g′(x)

or more briefly :
dy

dx
=
dy

du

du

dx

Example 7–1: Find
d

dx

(
3x2 + 1

)5
.

Solution: Here u = 3x2 + 1 and y = u5. Using the above formula,

we obtain:

dy

dx
=

dy

du
· du
dx

= 5u4 · 6x

= 5(3x2 + 1)4 · 6x

= 30x(3x2 + 1)4

Example 7–2: Find f ′(x) where f(x) = ex
5
.

Solution: Here u = x5 and f = eu. Using the chain rule formula,

we obtain:

f ′(x) = ex
5 · 5x4

Example 7–3: Find f ′(x) where f(x) = ln(1 + 2x+ 5x2).

Solution: Here u = 1 + 2x+ 5x2 and f = lnu. Using chain rule:

f ′(x) =
df

dx
=

df

du
· du
dx

=
1

u
· (2 + 10x)

=
1

1 + 2x+ 5x2
· (2 + 10x)

=
2 + 10x

1 + 2x+ 5x2
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Example 7–4: Find the derivatives of the following functions

using chain rule:

a) f(x) =
√

2x− 3

b) f(x) =
(
x3 + ex

)7
c) f(x) = ln

(
x+ 1

2x+ 1

)

Solution:

a) Choose u = 2x− 3 ⇒ du

dx
= 2

f ′(x) =
1

2
(2x− 3)−1/2 · 2

=
1√

2x− 3

b) Choose u = x3 + ex ⇒ du

dx
= 3x2 + ex

f ′(x) = 7
(
x3 + ex

)6 · (3x2 + ex)

c) Choose u =
x+ 1

2x+ 1

⇒ du

dx
=

2x+ 1− 2(x+ 1)

(2x+ 1)2
= − 1

(2x+ 1)2

f ′(x) =
1(

x+ 1

2x+ 1

) · −1

(2x+ 1)2

= − 1

(x+ 1)(2x+ 1)

Example 7–5: Find the derivatives of the following functions

using chain rule:

a) f(x) = eax

b) f(x) = ln
(
ax
)

c) f(x) = ex
2−x

d) f(x) = ln
(
x8
)

Solution:

a) u = ax ⇒ du

dx
= a

f ′(x) = aeax

b) u = ax ⇒ du

dx
= a

f ′(x) =
1

ax
· a =

1

x

c) u = x2 − x ⇒ du

dx
= 2x− 1

f ′(x) = (2x− 1)ex
2−x

d) u = x8 ⇒ du

dx
= 8x7

f ′(x) =
1

x8
· 8x7 =

8

x
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Logarithmic Differentiation: Logarithm transforms products

into sums. This helps in finding derivatives of some complicated

functions.

For example if

y =
(x3 + 1)(x2 − 1)

x8 + 6x4 + 1

then

ln y = ln(x3 + 1) + ln(x2 − 1)− ln(x8 + 6x4 + 1)

Derivative of both sides gives:

y′

y
=

3x2

x3 + 1
+

2x

x2 − 1
− 8x7 + 24x3

x8 + 6x4 + 1

Example 7–6: Find the derivative of the function

y = f(x) = xx

Solution: We can not use the power rule or product rule here. We

have to use logarithms.

ln y = x lnx

(ln y)′ = ln x+ x · 1

x

y′

y
= ln x+ 1

y′ = (lnx+ 1)xx

Example 7–7: Find the derivative of the function:

y = xlnx

Solution: ln y = lnx · lnx = ln2 x

(ln y)′ = 2 lnx · 1

x

y′

y
=

2 lnx

x

y′ =
2 lnx

x
· xlnx = 2xlnx−1 lnx

Example 7–8: Find the derivative of the function:

y = (x+ ex)lnx

Solution: ln y = lnx ln(x+ ex)

(ln y)′ =
1

x
ln(x+ ex) +

1 + ex

x+ ex
lnx

y′

y
=

ln(x+ ex)

x
+

1 + ex

x+ ex
lnx

y′ =

(
ln(x+ ex)

x
+

1 + ex

x+ ex
lnx

)
(x+ ex)lnx
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EXERCISES

Evaluate the derivatives of the following functions using chain rule:

7–1) f(x) =
(
1 + x4

)2
7–2) f(x) = ex

3

7–3) f(x) = ln
(
1 + x2

)
7–4) f(x) =

(
5 + x+ 2x3

)7
7–5) f(x) =

x√
3x2 + 2

7–6) f(x) =
1

(x2 − 4x)3

7–7) f(x) =

(
2x

x− 1

)5

7–8) f(x) =
(
e3x + 1

)5
7–9) f(x) =

√
1 + ln x

7–10) f(x) =
√
x2 + 2e3x

7–11) f(x) = 4x2+5x

7–12) f(x) = xex log3

(
x+ x4

)

Find f ′′:

7–13) f(x) = 52x

7–14) f(x) = ln
(
3x
)

7–15) f(x) =
√

2 + x

7–16) f(x) = x7e−x

Find f ′ using logarithmic differentiation:

7–17) f(x) =
(
1 + 2x

)7(
x3 + 1

)4

7–18) f(x) =

(
3x4 + x2

)6(
1 + x+ x2

)8
7–19) f(x) = (ln x)x

Find the equation of the line tangent to f(x) at x0:

7–20) f(x) = 2x2 − 8x+ 4, x0 = 2.

7–21) f(x) = x
√

2x+ 4, x = 0.

7–22) f(x) = x2(1− x)2, x = 2.

7–23) f(x) =
1

1 + x2
, x = 0.
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Evaluate the derivatives of the following functions at

the point x = a. In other words, find the value of f ′(a).

7–24) f(x) =
2x2 − 3x+ 12

x
, a = 2.

7–25) f(x) = x3/5, a = 32.

7–26) f(x) =
5 + 3x2

8 + 4x
, a = 0.

7–27) f(x) =
lnx

x4
, a = 1.

7–28) f(x) =
(
1 + 2x

)
ex, a = 0.

7–29) f(x) =
√

10− e−x, a = 0.

7–30) f(x) = ln

(
x− 2

3x− 3

)
, a = 5.

7–31) f(x) =

(
2x+

3

x

)2

, a =
1

2
.

7–32) f(x) =
(
4x+ e5x

)3
, a = 0.

7–33) f(x) =
1

2 + 4x+ 8e2x
, a = 0.

7–34) f(x) = x ln
√

1 + 2x, a = 1.

7–35) f(x) = ln

(
xex

1 + x2

)
, a = 2.

ANSWERS

7–1) f ′(x) = 8
(
1 + x4

)
x3

7–2) f ′(x) = 3x2ex
3

7–3) f ′(x) =
2x

1 + x2

7–4) f ′(x) = 7
(
5 + x+ 2x3

)6(
1 + 6x2

)
7–5) f ′(x) =

2

(3x2 + 2)3/2

7–6) f ′(x) =
12− 6x

(x2 − 4x)4

7–7) f ′(x) = 5

(
2x

x− 1

)4 −2

(x− 1)2
= − 160x4

(x− 1)6

7–8) f ′(x) = 15(e3x + 1)4e3x

7–9) f ′(x) =
1

2x
√

1 + ln x

7–10) f ′(x) =
2x+ 6e3x

2
√
x2 + 2e3x

7–11) f ′(x) = 4x2+5x
(
2x+ 5

)
7–12) f ′(x) = (ex + xex) log3

(
x+ x4

)
+ xex

1 + 4x3

(x+ x4) ln 3
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7–13) f ′′(x) = (4 ln2 5) 52x

7–14) f ′′(x) = − 1

x2

7–15) f ′′(x) =
1

4 (2 + x)3/2

7–16) f ′′(x) =
(
42x5 − 14x6 + x7

)
e−x

7–17) f ′(x) =
(
1 + 2x

)7(
x3 + 1

)4 [ 14

1 + 2x
+

12x2

x3 + 1

]

7–18) f ′(x) =

(
3x4 + x2

)6(
1 + x+ x2

)8 [6(12x3 + 2x)

3x4 + x2
− 8(1 + 2x)

1 + x+ x2

]

7–19) f ′(x) = (ln x)x
[
ln
(

lnx
)

+
1

lnx

]

7–20) y = −4

7–21) y = 2x

7–22) y = −4x+ 12

7–23) y = 1

7–24) f ′(2) = −1

7–25) f ′(32) =
3

20

7–26) f ′(0) = − 5

16

7–27) f ′(1) = 1

7–28) f ′(0) = 3

7–29) f ′(0) =
1

6

7–30) f ′(5) =
1

12

7–31) f ′
(

1

2

)
= −140

7–32) f ′(0) = 27

7–33) f ′(0) = − 1

5

7–34) f ′(1) =
1

2
ln 3 +

1

3

7–35) f ′(−1) =
7

10
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Implicit Differentiation

An equation involving x and y may define y as a function of x. This

is called an implicit function. For example, the following equations

define y implicitly.

� x2 + y2 = 1,

� yey + 2x− ln y = 0,

� 3xy + x2y3 + x = 5,

� ex + ey =
√
x+ 2y,

The following equations define y explicitly.

� y = x3 − 5x2,

� y = ln
(
x2 − ex

)
,

� y = x3 +
√
x+ xex,

� y =
1

1 + ex2−x ,

The derivative of y can be found without solving for y. This is

called implicit differentiation. The main idea is:

� Differentiate with respect to x.

� Solve for y′.

Example 8–1: Find y′ using the equation y + y3 = 3x2 + 1.

Solution: Find the derivative with respect to x:

y′ + 3y2y′ = 6x

Therefore y′ =
6x

1 + 3y2

Remark: Note that we are using chain rule here. For example,

derivative of yn is:

d(yn)

dx
=

d(yn)

dy

dy

dx

= nyn−1 y′
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Example 8–2: Find the slope of the tangent line to the curve

x2 + y2 = 4 at the point
(
1,
√

3
)

Solution: Let’s differentiate both sides with respect to x:

x2 + y2 = 4

d

dx

(
x2 + y2

)
=

d

dx

(
4
)

2x+ 2y
dy

dx
= 0

2yy′ = −2x

y′ = − x
y

Therefore at the point
(
1,
√

3
)
:

y′ = − 1√
3

An alternative method is to express y in terms of x

explicitly as

y =
√

4− x2

and then differentiate as:

y′ =
1

2
(4− x2)−1/2 · (−2x)

and then insert x = 1, but usually this is not possible.

Example 8–3: Find y′ using implicit differentiation where

xy + x3y2 = 5y

Solution: Let’s differentiate both sides with respect to x. Note

that we are also using product rule:

y + xy′ + 3x2y2 + x32yy′ = 5y′

xy′ + 2x3yy′ − 5y′ = −y − 3x2y2

(
x+ 2x3y − 5

)
y′ = −y − 3x2y2

y′ = − y + 3x2y2

x+ 2x3y − 5

Example 8–4: Find y′ using implicit differentiation where

x2ey + y = e3x

Solution: Let’s differentiate both sides with respect to x:

2xey + x2eyy′ + y′ = 3e3x

(
x2ey + 1

)
y′ = 3e3x − 2xey

y′ =
3e3x − 2xey

x2ey + 1
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Example 8–5: Find y′ using implicit differentiation where

ln(x+ 3y) =
1

x2

Solution:
1

x+ 3y
· (1 + 3y′) =

−2

x3

1 + 3y′ =
−2(x+ 3y)

x3

3y′ = − 2

x2
− 6y

x3
− 1

y′ = − 2

3x2
− 2y

x3
− 1

3

Example 8–6: Find y′ using implicit differentiation where

yexy + x4 lnx = e3x

Solution: First we use product rule, then chain rule:

y′exy + y
(
y + xy′

)
exy + 4x3 lnx+ x3 = 3e3x

exyy′ + xyexyy′ = 3e3x − 4x3 lnx− x3 − y2exy

y′ =
3e3x − 4x3 lnx− x3 − y2exy

exy + xyexy

y′ =
3e3x − 4x3 lnx− x3 − y2exy

(1 + xy) exy

Example 8–7: Find the slope of the tangent line to the curve

x8 + 4x2y2 + y8 = 6 at the point (1, 1)

Solution: Using implicit differentiation we obtain:

8x7 + 8xy2 + 8x2yy′ + 8y7y′ = 0

x7 + xy2 +
(
x2y + y7

)
y′ = 0

⇒ y′ =
−x7 − xy2

x2y + y7

At (1, 1) the slope is: y′ =
−2

2
= −1.

Example 8–8: Find y′ at (0, 0) where

(1 + x+ 2y)ey + 3xex = 1 + x2 + y2

Solution: Using implicit differentiation we obtain:

(1 + 2y′)ey + (1 +x+ 2y)eyy′+ 3ex + 3xex = 2x+ 2yy′

(
2ey + (1 + x+ 2y)ey − 2y

)
y′ = 2x− ey − 3ex − 3xex

y′ =
2x− ey − 3(1 + x)ex

(3 + x+ 2y)ey − 2y

y′(0, 0) = − 4

3
.
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EXERCISES

Find y′ using implicit differentiation:

8–1) x2y3 + 3xy2 + y = 5

8–2) xyex + (x+ 2y)2 = x

8–3) (x2 + y)2 = y3

8–4) x = y + y2/3

8–5) (1 + e−x)2 = ln(x+ y)

8–6) ln y = y3 + lnx

8–7) exy = x+ 2y

8–8) x2 + ln y = 3xy

Find y′ using implicit differentiation:

8–9) x2y = ey

8–10) x4 + y4 = 3x+ 5y

8–11) xy2 = 1 + ln(xy)

8–12) ey + x2ex = 18

8–13) y2 ln y = x3ex

8–14)
√

5x+ y3 + xy = 12

8–15)
2

x
+

7

y
= 9

8–16) x1/3 + y1/5 = y
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Find y′ at the indicated point using implicit differentiation:

8–17) (1 + 2x+ 3y)2 = 13x lnx+ 7y5 + 29 at (1, 1)

8–18) 3x− 2y + 8x2 + 5y2 + 9e9x + 7e2y = 16 at (0, 0)

8–19) x2y2 + 2xy3 + y − 10x+ 11 = 0 at (2, 1)

8–20) xy4 + 3y5 + x− 3y3 = 0 at (0, 1)

8–21) 2x− 4y4 + x2y6 + 11y3 = 0 at (3,−1)

8–22)
√

11 + y2 − 12xy + 2y2 + 4x = 0 at (1, 5)

8–23) xex − yey + xy − 1 = 0 at (1, 1)

8–24) ln(xy) + xy2 − ln 3x− 6y = 0 at (2, 3)

ANSWERS

8–1) y′ = − 2xy3 + 3y2

3x2y2 + 6xy + 1

8–2) y′ = − ye
x + xyex + 2x+ 4y − 1

xex + 4x+ 8y

8–3) y′ =
4x3 + 4xy

3y2 − 2x2 − 2y

8–4) y′ =
1

1 +
2

3
y−1/3

8–5) y′ = −2(x+ y)e−x(1 + e−x)− 1

8–6) y′ =
y

x(1− 3y3)

8–7) y′ =
1− yexy

xexy − 2

8–8) y′ =
3y2 − 2xy

1− 3xy
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8–9) y′ =
2xy

ey − x2

8–10) y′ =
4x3 − 3

5− 4y4

8–11) y′ =
y − xy3

2x2y2 − x

8–12) y′ = −(2x+ x2)ex−y

8–13) y′ =
3x2ex + x3ex

2y ln y + y

8–14) y′ = − 2y
√

5x+ y3 + 5

2x
√

5x+ y3 + 3y2

8–15) y′ = − 2y2

7x2

8–16) y′ =
5y4/5

3x2/3
(
5y4/5 − 1

)

8–17) y′
∣∣∣
(1,1)

= −11

8–18) y′
∣∣∣
(0,0)

= −7

8–19) y′
∣∣∣
(2,1)

=
4

21

8–20) y′
∣∣∣
(0,1)

= − 1

3

8–21) y′
∣∣∣
(3,−1)

=
8

5

8–22) y′
∣∣∣
(1,5)

=
336

53

8–23) y′
∣∣∣
(1,1)

=
2e+ 1

2e− 1

8–24) y′
∣∣∣
(2,3)

= − 27

19
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L’Hôpital’s Rule

Some limits like
0

0
,
∞
∞
, . . . etc. are called indeterminate forms.

These limits may turn out to be definite numbers, or infinity, or

may not exist. Note that when we say
0

0
we do not mean dividing

the number 0 by the number 0. This would be undefined.

0

0
is a notation we use to denote the limit

lim
x→ a

f

g

where lim
x→ a

f = 0, lim
x→ a

g = 0. The case
∞
∞

is similar to this.

For example, consider the limits

lim
x→ 0

x5

x2
, lim

x→ 0

x5

x7
, lim

x→ 0

3x5

4x5

All are of the form
0

0
but their results are 0, ∞ and

3

4
.

Consider the limit

lim
x→ a

f(x)

g(x)

Assume that this is an indeterminate form of the type:

0

0
or

∞
∞
.

Suppose g′(x) 6= 0 on an open interval containing a (except possi-

bly at x = a).

Then:

lim
x→ a

f(x)

g(x)
= lim

x→ a

f ′(x)

g′(x)

if this limit exists, or is ±∞.

This is called the L’Hôpital’s Rule.
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Example 9–1: Evaluate the following limit: (if it exists.)

lim
x→ 0

ex − 1

2x

Solution: This limit is in the form
0

0
, so we will use L’Hôpital’s rule:

lim
x→ 0

ex − 1

2x
= lim

x→ 0

ex

2

To evaluate this limit, insert x = 0 to obtain:

lim
x→ 0

ex

2
=

1

2

Example 9–2: Evaluate the following limit: (if it exists.)

lim
x→ 0

e3x − ex − 2x

x2

Solution: Limit is in the form
0

0
⇒ use L’Hôpital’s rule:

lim
x→ 0

e3x − ex − 2x

x2
= lim

x→ 0

3e3x − ex − 2

2x

This second limit is also in the form
0

0
, so we will use

L’Hôpital’s rule once more:

lim
x→ 0

3e3x − ex − 2

2x
= lim

x→ 0

9e3x − ex

2

Now just insert x = 0:

lim
x→ 0

9e3x − ex

2
= 4

Example 9–3: Evaluate the limit lim
x→∞

ex

x3
.

Solution: Indeterminacy of the form
∞
∞

⇒ use L’Hôpital.

lim
x→∞

ex

x3
= lim

x→∞

ex

3x2

= lim
x→∞

ex

6x

= lim
x→∞

ex

6

= ∞

The result would be the same if it were x30 rather than

x3. Exponential function increases faster than all poly-

nomials.

Example 9–4: Evaluate the limit lim
x→∞

lnx

x2
.

Solution: Indeterminacy of the form
∞
∞

⇒ use L’Hôpital.

lim
x→∞

lnx

x2
= lim

x→∞

1
x

2x

= lim
x→∞

1

2x2

= 0

The result would be 0 for any xk. Logarithmic function

increases slower than all polynomials.
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Example 9–5: Evaluate the limit lim
x→ 1

x10 − 1

x7 − 1
.

Solution: It is possible to solve this question using the algebraic

identities:

x10 − 1 =
(
x− 1

)(
x9 + x8 + · · ·+ x+ 1

)
x7 − 1 =

(
x− 1

)(
x6 + x5 + · · ·+ x+ 1

)
lim
x→ 1

x10 − 1

x7 − 1
= lim

x→ 1

x9 + x8 + · · ·+ x+ 1

x6 + x5 + · · ·+ x+ 1

=
10

7

but this is too complicated. Limit is in the form
0

0
and

using L’Hôpital gives the same result easily.

lim
x→ 1

x10 − 1

x7 − 1
= lim

x→ 1

10x9

7x6

=
10

7

Example 9–6: Evaluate the limit lim
x→ 0

(1 + x)4/3 − 1

x
.

Solution: Indeterminacy of the form
0

0
⇒ Use L’Hôpital:

lim
x→ 0

(1 + x)4/3 − 1

x
= lim

x→ 0

4
3
(1 + x)1/3

1

=
4

3

Example 9–7: Evaluate the following limit: (if it exists.)

lim
x→ 0

ex − 1− x− x2

2

x4

Solution: This limit is in the form
0

0
, so using L’Hôpital’s rule we

obtain:

lim
x→ 0

ex − 1− x− x2

2

x4
= lim

x→ 0

ex − 1− x
4x3

= lim
x→ 0

ex − 1

12x2

= lim
x→ 0

ex

24x

At this point, the limit is NOT in the form
0

0
, so we can

NOT use L’Hôpital. Checking the numerator and

denominator, we see that:

=∞

Example 9–8: Evaluate the limit lim
x→∞

lnx+ x2

xex
.

Solution: Indeterminacy of the form
∞
∞

⇒ Use L’Hôpital:

lim
x→∞

lnx+ x2

xex
= lim

x→∞

1
x

+ 2x

ex + xex

= lim
x→∞

− 1
x2 + 2

ex + ex + xex

= 0
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EXERCISES

Evaluate the following limits (if they exist):

9–1) lim
x→ 0

e5x − e4x − x
x2

9–2) lim
x→ 0

e3x − 1

ln(x+ 1)

9–3) lim
x→ 0

ex − 1

e2x + 3x− 1

9–4) lim
x→∞

3x2 + 4 lnx

6x2 + 7 lnx

9–5) lim
x→∞

2ex + 5x

7ex + 8x+ 12

9–6) lim
x→∞

ln(x+ x4)

x

9–7) lim
x→ 64

x1/3 − 4

x1/2 − 8

9–8) lim
x→ 0

√
9 + 2x− 3√
16 + x− 4

Evaluate the following limits (if they exist):

9–9) lim
x→ 2

x3 − 2x2 + 6x− 12

x3 − 2x2 + 8x− 16

9–10) lim
x→ e

lnx− 1

x− e

9–11) lim
x→ 0

√
1 + x− 1

x

9–12) lim
x→ 3

x3 − 4x− 15

x2 + x− 12

9–13) lim
x→∞

lnx
3
√
x

9–14) lim
x→ 1

x6 − 1

x4 − 1

9–15) lim
x→ 3

ex − e3

x2 − 9

9–16) lim
x→ 0

4x − 1

2x − 1
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Evaluate the following limits (if they exist):

9–17) lim
x→ 2

ln x
2

x(x− 2)

9–18) lim
x→ 0

√
a+ bx−

√
a+ cx

x

9–19) lim
x→ 0

(1 + x)k − 1− kx
x2

9–20) lim
x→ 1

lnx

x− 1

9–21) lim
x→ 1

lnx− x+ 1

(x− 1)2

9–22) lim
x→ 1/2

ln(2x)

2x2 + x− 1

9–23) lim
x→∞

x3e−x

9–24) lim
x→ 0+

x lnx

ANSWERS

9–1)
9

2

9–2) 3

9–3)
1

5

9–4)
1

2

9–5)
2

7

9–6) 0

9–7)
1

3

9–8)
8

3
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9–9)
5

6

9–10)
1

e

9–11)
1

2

9–12)
23

7

9–13) 0

9–14)
3

2

9–15)
e3

6

9–16) 2

9–17)
1

4

9–18)
b− c
2
√
a

9–19)
k(k − 1)

2

9–20) 1

9–21) − 1

2

9–22)
2

3

9–23) 0

9–24) 0



Chapter 10

Finding Maximum and Minimum Values

Local and Absolute Extrema:

Extremum is either minimum or maximum. Extrema is the plural

form.

Absolute Extrema: If

f(c) 6 f(x)

for all x on a set S of real numbers, f(c) is the absolute minimum

value of f on S.

Similarly if

f(c) > f(x)

for all x on S, f(c) is the absolute maximum value of f on S.

Local Extrema: f(c) is local minimum if

f(c) 6 f(x)

for all x in some open interval containing c.

Similarly, f(c) is local maximum if

f(c) > f(x)

for all x in some open interval containing c.

Local extrema are points that are higher (or lower) than the points

around them.

Local max., Abs. max.

Local min.

Local max.

Abs. min.

a b

As you can see in the figure, a point can be both local and absolute

extremum. Also, it may be an absolute extremum without being a

local one or vice versa.
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Question: Does a continuous function always have an absolute

maximum and an absolute minimum value?

This depends on the interval. It may or may not have such values

on an open interval.

a b

No max. or min.

a b

Max. but no min.

a b

Min. but no max.

Theorem: If the function f is continuous on the closed interval[
a, b
]
, then f has a maximum and a minimum value on

[
a, b
]
.

Critical Point: A number c is called a critical point of the

function f if f ′(c) = 0 or f ′(c) does not exist.

f ′ = 0 f ′ DNE f ′ DNE

The main ideas about extremum points can be summarized as:

1. f can have local extremum only at a critical point.

2. f can have absolute extremum only at a critical point or an

endpoint.

For example, the local extremum point of the parabola

f(x) = ax2 + bx+ c

will be at the point x = − b

2a
(called the vertex) because this is

the point where the derivative is zero:

f ′(x) = 2ax+ b = 0 ⇒ x = − b

2a

If a > 0 it is a minimum and if a < 0 it is a maximum.

The local minimum point of the function f(x) =
∣∣ax+ b

∣∣ will be

at the point x = − b

a
because this is the point where the derivative

is undefined.

How to find absolute extrema:

� Find the points where f ′ = 0.

� Find the points where f ′ does not exist.

� Consider such points only if they are inside the given interval.

� Consider endpoints.

� Check all candidates. Both absolute minimum and maximum

are among them.



CHAPTER 10 - Finding Maximum and Minimum Values 71

Example 10–1: Find the maximum and minimum values of

f(x) = −x2 + 10x+ 2

on the interval
[
1, 4

]
.

Solution: Let’s find the critical points first:

f ′ = −2x+ 10 = 0

⇒ x = 5 is the only critical point. But it is not

in our interval
[
0, 4
]
, so our candidates for extrema are

the endpoints:
x f(x)

1 11

4 26

Clearly, absolute minimum is 11 and it occurs at x = 1.

Absolute maximum is 26 and it occurs at x = 4.

O x

y

1 4 5

Example 10–2: Find the maximum and minimum values of

f(x) = −x2 + 10x+ 2

on the interval
[
2, 10

]
.

Solution: Although it is the same function, interval is different.

f ′(x) = −2x+ 10 = 0

⇒ x = 5 is the only critical point. It is inside the

interval.
x f(x)

2 18

5 27

10 2

Absolute minimum is 2 and it occurs at x = 10. Absolute

maximum is 27 and it occurs at x = 5.

O x

y

2 105
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Example 10–3: Find the maximum and minimum values of

f(x) =
∣∣x− 8|

on the interval
[
6, 12

]
.

Solution: Let’s write the function in piecewise defined form:

f(x) =

{
−x+ 8 if x < 8

x− 8 if x > 8

Derivative is:

f ′(x) =

{
−1 if x < 8

1 if x > 8

Derivative is never zero. The only critical point is x = 8.

Derivative does not exist at that point.

Now we need a table that shows all critical points in the

interval and endpoints:

x f(x)

6 2

8 0

12 4

We can see that absolute minimum is 0 and absolute

maximum is 4.

Example 10–4: Find the maximum and minimum values of

f(x) =
∣∣16− x2

∣∣
on the interval

[
− 3, 5

]
.

Solution: First, express f as a piecewise defined function:

f(x) =


x2 − 16 if x < −4

16− x2 if −4 6 x 6 4

x2 − 16 if x > 4

Derivative is:

f ′(x) =


2x if x < −4

−2x if −4 < x < 4

2x if x > 4

f ′ is zero at x = 0 and it is undefined at x = ±4.

We will not consider x = −4 because it is outside the

interval. So, critical points in the interval are:

x = 0, x = 4

Together with the endpoints, we can make the following

table:

x f(x)

−3 7

0 16 Abs. Max.

4 0 Abs. Min.

5 9
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Applied Optimization:

Finding the maximum or minimum of a function has many real-life

applications. For these problems:

� Express the quantity to be maximized or minimized as a

function of the independent variable. (We will call it x)

� Determine the interval over which x changes.

� Solve the problem in the usual way. (Find the critical points,

check the function at critical points and endpoints)

Example 10–5: A piece of cardboard is shaped as a 9× 9 square.

We will cut four small squares from the corners and make an open

top box. What is the maximum possible volume of the box?

9

x

x

Solution: If the squares have edge length x, we can express the

volume as:

V (x) = x(9− 2x)2 = 81x− 36x2 + 4x3

x

9− 2x

Considering the maximum and minimum possible values,

we can see that x ∈
[
0, 9

2

]
. Now we can use maximiza-

tion procedure:

V ′(x) = 81− 72x+ 12x2 = 0

27− 24x+ 4x2 = 0

(2x− 9)(2x− 3) = 0

x =
9

2
or x =

3

2

Checking all critical and endpoints, we find that x =
3

2
gives the maximum volume, which is:

V = 54.
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Example 10–6: You are designing a rectangular poster to contain

50 cm2 of picture area with a 4 cm margin at the top and bottom

and a 2 cm margin at each side. Find the dimensions x and y that

will minimize the total area of the poster.

x

y50 cm2

4 cm

4 cm

2 2

Solution:(x− 4)(y − 8) = 50 ⇒ y =
50

x− 4
+ 8

A = xy = x

(
50

x− 4
+ 8

)

A′ =
50

x− 4
+ 8− 50x

(x− 4)2
= 0

200

(x− 4)2
= 8 ⇒ (x− 4)2 = 25

⇒ x = 9 and y = 18.

Example 10–7: You are selling tickets for a concert. If the price

of a ticket is $15, you expect to sell 600 tickets. Market research

reveals that, sales will increase by 40 for each $0.5 price decrease,

and decrease by 40 for each $0.5 price increase. For example, at

$14.5 you will sell 640 tickets. At $16 you will sell 520 tickets.

What should the ticket price be for largest possible revenue?

Solution: We need to define our terms first:

� x denotes the sale price of a ticket in $,

� N denotes the number of tickets sold,

� R denotes the revenue.

According to market research, N = 600 + 40
15− x

0.5
.

In other words:

N = 600 + 80
(
15− x

)
= 1800− 80x.

Note that we sell zero tickets if x =
1800

80
= 22.5.

(That’s the highest possible price.)

Revenue is: R = Nx

= (1800− 80x)x

= 1800x− 80x2

This is a maximization problem where the interval of the

variable is: x ∈
[
0, 22.5

]
.

R′ = 1800− 160x = 0 ⇒ x = 11.25

Checking the critical point x = 11.25 and endpoints

0 and 22.5 we see that the maximum revenue occurs at

x = 11.25.
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Example 10–8: A helicopter will cover a distance of 235 km. with

constant speed v km/h. The amount of fuel used during flight in

terms of liters per hour is

75 +
v

3
+

v2

1200
.

Find the speed v that minimizes total fuel used during flight.

Solution: The time it takes for flight is: t =
235

v

The total amount of fuel consumed is:(
75 +

v

3
+

v2

1200

)
· t = 235 ·

(
75

v
+

1

3
+

v

1200

)
In other words we have to find v that minimizes f(v)

on v ∈
(
0, ∞

)
where:

f(v) =
75

v
+

1

3
+

v

1200

Note that the distance 235 km. is not relevant. Once we

find the optimum speed, it is optimum for all distances.

f ′(v) = − 75

v2
+

1

1200
= 0

⇒ v2 = 75 · 1200 = 90 000

⇒ v = 300

This value clearly gives the minimum, because:

lim
v→ 0

f = lim
v→∞

f =∞.

Example 10–9: A cylinder is inscribed in a cone of radius R, height

H. What is the maximum possible the volume of the cylinder?

H

R

h

r

Solution:

R

rH

h

V = πr2h

Similar triangles:
H − h
H

=
r

R

⇒ h = H
(

1− r

R

)

V = πr2H
(

1− r

R

)
= πH

(
r2 − r3

R

)
dV

dr
= πH

(
2r − 3r2

R

)
= 0

2r =
3r2

R
⇒ r =

2R

3
⇒ h =

H

3

Maximum Volume: V =
4

27
πR2H.
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EXERCISES

Find the absolute maximum and minimum values of f(x) on the

given interval:

10–1) f(x) = x
2
3 on

[
− 2, 3

]
10–2) f(x) = 10x

(
2− lnx

)
on

[
1, e2

]
10–3) f(x) = 12− x2 on

[
2, 4

]
10–4) f(x) = 12− x2 on

[
− 2, 4

]
10–5) f(x) = 3x3 − 16x on

[
− 2, 1

]
10–6) f(x) = x+

9

x
on

[
1, 4

]
10–7) f(x) = 3x5 − 5x3 on

[
− 2, 2

]
10–8) f(x) = |3x− 5| on

[
0, 2

]
10–9) f(x) = |x2 + 6x− 7| on

[
− 8, 2

]
10–10) f(x) = x

√
1− x2 on

[
− 1, 1

]
10–11) f(x) = e−x

2

on
[
− 1, 2

]
10–12) f(x) =

120√
x

on
[
16, 36

]

10–13) We will cover a rectangular area with a 36m-long fence.

The area is near a river so we will only cover the three sides. Find

the maximum possible area.

River

A

x

yy

y + x+ y = 36

10–14) An open top box has volume 75 cm3 and is shaped as

seen in the figure. Material for base costs 12$/cm2 and material

for sides costs 10$/cm2. Find the dimensions x and y that give

the minimum total cost.

y

x

x

10–15) Find the dimensions of the right circular cylinder of the

greatest volume if the surface area is 54π.

10–16) What is the maximum possible area of the rectangle with

its base on the x−axis and its two upper vertices are on the graph

of y = 4− x2?
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10–17) Find the shortest distance between the point (2, 0) and

the curve y =
√
x.

10–18) Find the point on the line y = ax + b that is closest to

origin.

10–19) We choose a line passing through the point (1, 4) and

find the area in the first quadrant bounded by the line and the

coordinate axes. What line makes this area minimum?

(1, 4)

x

y

10–20) Two vertical poles are 21 meters apart. Their heights are

12m and 16m. A cable is stretched from the top of first pole to a

point on the ground and then to the top of the second pole. Find

the minimum possible length of the cable.

10–21) Find the dimensions of a right circular cylinder of maximum

volume that can be inscribed in a sphere of radius R.

10–22) A swimmer is drowning on point B. You are at point

A. You may run up to point C and then swim, or you may start

swimming a distance x earlier. Assume your running speed is 5

m/s and your swimming speed is 3 m/s. What is the ideal x?

SEA

LAND

A

B

C

120m

20m

x

10–23) A coffee chain has 20 shops in a city. Average daily profit

per shop is $3000. Each new shop decreases the average profit of

all shops by $100. For example, if the company opens 3 new shops,

average profit becomes $2700.

What is the ideal number of shops, assuming the company wants

to maximize total profit?

10–24) A 500−room hotel’s nightly rent is $80 and it is full every

night. For each $1 increase in rent, 5 fewer rooms are rented. For

example, if rent is $100 there are 400 full and 100 empty rooms.

The cost of service per room (for full rooms) is $40 per day. What

is the nightly rent that maximizes profit? What is the maximum

profit?
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ANSWERS

10–1) Absolute Minimum: 0, Absolute Maximum: 3
√

9.

10–2) Absolute Minimum: 0, Absolute Maximum: 10e.

10–3) Absolute Minimum: −4, Absolute Maximum: 8.

10–4) Absolute Minimum: −4, Absolute Maximum: 12.

10–5) Absolute Minimum: −13, Absolute Maximum:
128

9
.

10–6) Absolute Minimum: 6, Absolute Maximum: 10.

10–7) Absolute Minimum: −56, Absolute Maximum: 56.

10–8) Absolute Minimum: 0, Absolute Maximum: 5.

10–9) Absolute Minimum: 0, Absolute Maximum: 16.

10–10) Absolute Minimum: − 1

2
, Absolute Maximum:

1

2
.

10–11) Absolute Minimum:
1

e2
, Absolute Maximum: 1.

10–12) Absolute Minimum: 20, Absolute Maximum: 30.

10–13) A = 162

10–14) x = 5, y = 3

10–15) r = 3, h = 6

10–16)
32

3
√

3

10–17)

√
7

2

10–18)

(
−ab

1 + a2
,

b

1 + a2

)

10–19) y = −4x+ 8

10–20) 35m

10–21) r =

√
2√
3
R, h =

2√
3
R

10–22) x = 15m

10–23) 25

10–24) 110, 24 500
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Curve Sketching

First Derivative Test: At a critical point, the derivative is zero

or undefined. Let f be a continuous function and let x = c be a

critical point of it. Suppose f ′ exists in some interval containing c

except possibly at c.

f has a local extremum at c if and only if f ′ changes sign at c.

� Sign change: − to + ⇒ f(c) is a local minimum.

� Sign change: + to − ⇒ f(c) is a local maximum.

Local Min.

−
− 0 +

+

Local Max.

+
+ 0 −

−

Neither

+ + 0 + +

−
−

?

+
+

+
+

?
−
− + + ?

+
+

Example 11–1: Find the intervals where f(x) = 2x3− 9x2 + 5 is

increasing and decreasing and local extrema of this function.

Solution: f ′(x) = 6x2 − 18x = 0 ⇒ x = 0 or x = 3.

There are two critical points, 0 and 3. Note that

f(0) = 5 and f(3) = −22.

x changes sign at 0 and (x− 3) changes sign at 3. We

can find the sign of x(x− 3) by multiplying these signs.

x

(x− 3) − − +

f ′ = x(x− 3) + − +

f increasing decreasing increasing

0 3

0

0 0

Based on this table, we can see that the graph is roughly

like this:
(0, 5)

(3,−22)

Therefore (0, 5) is local maximum and (3,−22) is local

minimum.



80 CHAPTER 11 - Curve Sketching

Concavity: The graph of a differentiable function is concave up if

f ′ increasing, it is concave down if f ′ decreasing.

Test for Concavity:

� If f ′′(x) > 0, then f is concave up at x.

� If f ′′(x) < 0, then f is concave down at x.

Inflection Point: An inflection point is a point where the concavity

changes. In other words, if:

� f is continuous at x = a,

� f ′′ > 0 on the left of a and f ′′ < 0 on the right, or vice

versa.

then x = a is an inflection point.

This means either f ′′(a) = 0 or f ′′(a) does not exist.

Examples:

−2 2

10 y = x2

Concave UP

x

y

2 4 6 8

2
y =
√
x

Concave DOWN

x

y

−4 −2 2 4 6

2
y = mx+ n

NEITHER

x

y
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Example 11–2: Determine the concavity of f(x) = x3. Find

inflection points. (If there is any.)

Solution: f = x3

f ′ = 3x2

f ′′ = 6x

� For x > 0, f ′′ > 0 ⇒ f is concave up.

� For x < 0, f ′′ < 0 ⇒ f is concave down.

� x = 0 is the inflection point.

x

f ′′ − +

f is: concave down concave up

0

0

−1 1

−1

1 y = x3

C. DOWN

C. UP

inf.pt.

x

y

Shape of a graph based on first and second derivatives:

f ′ > 0, f ′′ > 0 f ′ > 0, f ′′ < 0

x

y

x

y

Increasing, Concave up. Increasing, Concave down.

f ′ < 0, f ′′ > 0 f ′ < 0, f ′′ < 0

x

y

x

y

Decreasing, Concave up. Decreasing, Concave down.
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Curve Sketching:

� Identify domain of f , symmetries, x and y intercepts. (if

any)

� Find first and second derivatives of f .

� Find critical points, inflections points.

� Make a table and include all this information.

� Sketch the curve using the table.

Example 11–3: Sketch the graph of f(x) = x3 + 3x2 − 24x.

Solution: lim
x→∞

f = +∞, lim
x→−∞

f = −∞

f ′ = 3x2 + 6x− 24

= 3(x+ 4)(x− 2)

f ′ = 0 ⇒ x = −4, and x = 2.

These are the critical points.

f ′′ = 6x+ 6 = 0 ⇒ x = −1.

This is the inflection point.

Some specific points on the graph are:

f(−4) = 80, f(−1) = 26.

f(0) = 0, f(2) = −28.

The equation f(x) = 0 gives x = 0 or x2 + 3x− 24 = 0

in other words x =
−3±

√
105

2
. Using a calculator we find

x1 = −6.6, x2 = 3.6 but it is possible to sketch the graph

without

these points. Putting all this information on a table, we obtain:

x

f ′ + − − +

f ′′ − − + +

f ↗ ↘ ↘ ↗

−4 − 1 2

0 0

0

Based on this table, we can sketch the graph as:

Inf. Pt.

Local Min.

−4

80

−1

26

2

−28

Local Max.

x

y
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EXERCISES

Determine the intervals where the following functions are increasing

and decreasing:

11–1) f(x) = x3 − 12x− 5

11–2) f(x) = 16− 4x2

11–3) f(x) =
1

(x− 4)2

11–4) f(x) =
x2 − 3

x− 2

11–5) f(x) = 4x5 + 5x4 − 40x3

11–6) f(x) = x4e−x

11–7) f(x) =
lnx

x

11–8) f(x) = 5x6 + 6x5 − 45x4

11–9) f(x) = x4 − 2x2 + 1

11–10) f(x) =
x

x+ 1

Identify local maxima, minima and inflection points, then sketch

the graphs of the following functions:

11–11) f(x) = x3 − 3x2 − 9x+ 11

11–12) f(x) = −2x3 + 21x2 − 60x

11–13) f(x) = 3x4 + 4x3 − 36x2

11–14) f(x) = (x− 1)2(x+ 2)3

11–15) f(x) = x6 − 6x5

11–16) f(x) = x3e−x

11–17) f(x) = e−x
2

11–18) f(x) =
x

x2 + 1

11–19) f(x) = x ln |x|

11–20) f(x) = −x4 + 32x2
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ANSWERS

11–1) Increasing on
(
−∞, −2

)
, decreasing on

(
−2, 2

)
, increasing

on
(
2, ∞

)
.

11–2) Increasing on
(
−∞, 0

)
, decreasing on

(
0, ∞

)
.

11–3) Increasing on
(
−∞, 4

)
, decreasing on

(
4, ∞

)
.

11–4) Increasing on
(
− ∞, 1

)
, decreasing on

(
1, 2

)
∪
(
2, 3

)
,

increasing on
(
3, ∞

)
.

11–5) Increasing on
(
−∞, −3

)
, decreasing on

(
− 3, 0

)
∪
(
0, 2
)

,

increasing on
(
2, ∞

)
.

11–6) Decreasing on
(
−∞, 0

)
, increasing on

(
0, 4
)

, decreasing

on
(
4, ∞

)
.

11–7) Increasing on
(
0, e
)
, decreasing on

(
e, ∞

)
.

11–8) Decreasing on
(
−∞, −3

)
, increasing on

(
− 3, 0

)
, de-

creasing on
(
0, 2

)
, increasing on

(
2, ∞

)
.

11–9) Decreasing on
(
−∞, −1

)
, increasing on

(
− 1, 0

)
, de-

creasing on
(
0, 1

)
, increasing on

(
1, ∞

)
.

11–10) Increasing on
(
−∞, −1

)
∪
(
− 1, ∞

)
.

(Blue dots denote inflection points, red dots local extrema.)

11–11)

(−1, 16)

(1, 0)

(2,−14)

11–12)

(2,−52)

(5,−25)
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11–13)

(−3,−189)

(2,−64)

11–14)

(−2, 0)

(1, 0)

(−0.2, 8.4)

11–15)

(4,−2048)

(5,−3125)

11–16)

(3, 1.34)
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11–17)

(0, 1)

11–18)

(−1,−0.5)

(1, 0.5)

11–19)

(
1

e
,− 1

e

)

11–20)

x

y

O

(−4, 256) (4, 256)
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Integrals

Indefinite Integrals:

If f is the derivative of F , then F is the antiderivative of f .

F ′(x) = f(x)

For example, the antiderivative of f(x) = x is:

F (x) =
x2

2
, or F (x) =

x2

2
+ 5, or F =

x2

2
− 7

Note that all of the above functions have the property

F ′(x) = x = f(x)

In other words, the constant numbers we add do not matter.

There are infinitely many such antiderivatives. The collection of all

antiderivatives of f is called the indefinite integral of f .∫
f(x) dx = F (x) + c

Here, c is an arbitrary constant.

Using the fact that integral and derivative are inverse operations,

we obtain: ∫
1 dx = x+ c

∫
x dx =

x2

2
+ c

∫
xk dx =

xk+1

k + 1
+ c, k 6= −1

∫
1

x
dx = ln |x|+ c

∫
ex dx = ex + c

∫
eax dx =

eax

a
+ c
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Example 12–1: Evaluate the integral

∫ (
1

x3
− 2x+ 4

)
dx

Solution: ∫ (
1

x3
− 2x+ 4

)
dx =

∫
dx

x3
−
∫

2x dx+

∫
4 dx

=

∫
x−3 dx− 2

∫
x dx+

∫
4 dx

=
x−2

−2
− x2 + 4x+ c

= − 1

2x2
− x2 + 4x+ c

Example 12–2: Evaluate the integral

∫
x2 − 1

x
√
x
dx

Solution:

∫
x2 − 1

x
√
x
dx =

∫
x2

x
√
x
dx−

∫
1

x
√
x
dx

=

∫
x

1
2 dx−

∫
x−

3
2 dx

=
x

3
2

3
2

− x−
1
2

−1
2

+ c

=
2

3
x
√
x+

2√
x

+ c

Example 12–3: Find a function f(x) such that f ′(x) = 5ex and

f(0) = 9.

Solution: We have to integrate 5ex to find f(x):∫
5ex dx = 5ex + c

Now, let’s use the fact that f(0) = 9 to determine c :

5e0 + c = 9 ⇒ 5 + c = 9 ⇒ c = 4

f(x) = 5ex + 4.

Example 12–4: Find a function f(x) such that f ′′(x) = 4− 8

x2
and f(1) = −15, f ′(1) = 7.

Solution: Let’s integrate 4− 8

x2
to find f ′(x):

f ′(x) =

∫
f ′′(x) dx =

∫ (
4− 8

x2

)
dx = 4x+

8

x
+ c1

Using f ′(1) = 7 we find: 4 + 8 + c1 = 7

⇒ c1 = −5, f ′(x) = 4x+
8

x
− 5.

f(x) =

∫
f ′(x) dx

=

∫ (
4x+

8

x
− 5

)
dx = 2x2 + 8 ln |x| − 5x+ c2

Using f(1) = −15 we find:

2 + 0− 5 + c2 = −15 ⇒ c2 = −12.

⇒ f(x) = 2x2 + 8 ln |x| − 5x− 12.
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Definite Integrals: We denote the area under a curve using

definite integrals. We can approximate the area under the graph

of f between x = a and x = b using rectangles.

x1 x2 x3a b

f(x)

x

y

a b

f(x)

x

y

a

A

b

f(x)

x

y

This area is denoted by:

A =

∫ b

a

f(x)dx

Note that definite integral is a number. (Not a function.)

Definite Integral Properties:∫ a

a

f(x)dx = 0

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx

∫ b

a

f(x)± g(x)dx =

∫ b

a

f(x)dx±
∫ b

a

g(x)dx

∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

(Min f) · (b− a) 6
∫ b

a

f(x)dx 6 (Max f) · (b− a)

We can see all these by using simple geometric rules.
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The Fundamental Theorem of Calculus: It seems that we

have two different concepts of integral. One is inverse operation

of derivative, the other is area under a curve. But there is a very

close relationship between the two:

Let f be a continuous function on the interval
[
a, b
]
. If F

is any anti-derivative of f , then∫ b

a

f(x) dx = F (b)− F (a)

This is called the fundamental theorem of calculus. We will use

the notation F (x)

∣∣∣∣b
a

for F (b)− F (a).

For example, suppose we want to find the following area:

x

y

O

y = x

b

∫ b

0

x dx =
x2

2

∣∣∣∣b
0

=
b2

2
− 0

=
b2

2

Example 12–5: Evaluate

∫ 2

0

(
3x2 + 8x− 5

)
dx

Solution:

∫ 2

0

3x2 + 8x− 5 dx = x3 + 4x2 − 5x

∣∣∣∣2
0

= 23 + 4 · 22 − 5 · 2− 0

= 14

Example 12–6: Evaluate

∫ 9

1

5√
x
dx

Solution:

∫ 9

1

5√
x
dx =

∫ 9

1

5x−
1
2 dx

=
5x

1
2

1
2

∣∣∣∣∣
9

1

= 5 · 2 · 9 1
2 − 5 · 2 · 1 1

2

= 30− 10 = 20

Example 12–7: Evaluate

∫ 7

3

dx

x

Solution:

∫ 7

3

dx

x
= ln |x|

∣∣∣∣7
3

= ln 7− ln 3 = ln
7

3
.
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EXERCISES

Evaluate the following indefinite integrals:

12–1)

∫
(x2 + 3x5) dx

12–2)

∫
(1 + 10x− 24x7) dx

12–3)

∫
1

7x4
dx

12–4)

∫
−5ex dx

12–5)

∫
2

x
dx

12–6)

∫
(x4 − x

√
x+ 2x) dx

12–7)

∫
(x2 + 4)(x− 5) dx

12–8)

∫
1

3
√
x5
dx

12–9)

∫
2u2 − 3u+ 12

u2
du

12–10)

∫
3

e−z
dz

Evaluate the following definite integrals:

12–11)

∫ 1

0

√
x3 dx

12–12)

∫ 27

1

x−1/3 dx

12–13)

∫ 3

1

5

u
du

12–14)

∫ 3

2

(x2 + 5x− 1) dx

12–15)

∫ 1

0

ex dx

12–16)

∫ 2

−1
(1 + 4ex) dx

12–17)

∫ 4

1

5t−2 dt

12–18)

∫ 9

1

1−
√
x√

x
dx

12–19)

∫ 32

1

x−2/5 dx

12–20)

∫ −1
−2

1

x3
dx
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ANSWERS

12–1)
x3

3
+
x6

2
+ c

12–2) x+ 5x2 − 3x8 + c

12–3) − 1

21x3
+ c

12–4) −5ex + c

12–5) 2 ln |x|+ c

12–6)
x5

5
− 2x5/2

5
+ x2 + c

12–7)
x4

4
− 5x3

3
+ 2x2 − 20x+ c

12–8) − 3

2
x−2/3 + c

12–9) 2u− 3 ln |u| − 12u−1 + c

12–10) 3ez + c

12–11)
2

5

12–12) 12

12–13) 5 ln 3

12–14)
107

6

12–15) e− 1

12–16) 3 + 4(e2 − e−1)

12–17)
15

4

12–18) −4

12–19)
35

3

12–20) − 3

8
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Substitution

Using the chain rule, we obtain:

d

dx
F
(
u(x)

)
=
dF (u)

du
· du(x)

dx

If we integrate both sides, we see that∫
f
(
u(x)

)
u′(x) dx = F

(
u(x)

)
+ c

where f = F ′, or more simply∫
f
(
u(x)

)
u′(x) dx =

∫
f(u) du

Here, the idea is to make a substitution that will simplify the given

integral. For example, the choice u = x2 + 1 simplifies the integral:∫
2x dx

x2 + 1
→

∫
du

u

Note that here we replace both x and dx:

x2 + 1 → u

2x dx → du

Example 13–1: Evaluate the integral

∫ (
x4 + 1

)2
4x3 dx.

Solution: Let’s use the new variable u = x4 + 1. In that case(
x4 + 1

)2
= u2

Also,
du

dx
= 4x3 ⇒ du = 4x3 dx

If we write the integral using the new variable:

I =

∫
u2 du

=
u3

3
+ c

But we have to express this in terms of the original

variable:

I =

(
x4 + 1

)3
3

+ c
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Example 13–2: Evaluate the integral

∫
e3x

2

x dx.

Solution: u = 3x2 ⇒ du = 6x dx

⇒ x dx =
1

6
du

∫
e3x

2

x dx =

∫
eu

1

6
du

=
1

6
eu + c

=
e3x

2

6
+ c.

Example 13–3: Evaluate the integral

∫ (
x3 + 6x2

)7(
x2 + 4x

)
dx.

Solution: The substitution u = x3 + 6x2 gives:

du =
(
3x2 + 12x

)
dx

1

3
du =

(
x2 + 4x

)
dx

Rewriting the integral in terms of u, we obtain:∫ (
x3 + 6x2

)7(
x2 + 4x

)
dx

=
1

3

∫
u7 du

=
u8

24
+ c

=

(
x3 + 6x2

)8
24

+ c

Substitution in Definite Integrals: If u′ is continuous on the

interval
[
a, b
]

and f is continuous on the range of u then:∫ b

a

f
(
u(x)

)
u′(x) dx =

∫ u(b)

u(a)

f(u) du

Don’t forget to transform the limits!

Example 13–4: Evaluate the integral

∫ 2

1

x+ 2

x2 + 4x+ 1
dx.

Solution: Use the substitution

u = x2 + 4x+ 1 ⇒ du =
(
2x+ 4

)
dx

⇒ 1

2
du =

(
x+ 2

)
dx

The new integral limits are:

x = 1 ⇒ u = 6.

x = 2 ⇒ u = 13.

Rewriting the integral in terms of u, we obtain:∫ 2

1

x+ 2

x2 + 4x+ 1
dx =

∫ 13

6

1
2
du

u

=
1

2
ln |u|

∣∣∣∣13
6

=
1

2
ln 13− 1

2
ln 6

=
1

2
ln

13

6
.
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Example 13–5: Evaluate the definite integral

∫ 1

0

8x
(
x2 + 2

)3
dx.

Solution:

� Using u = x2 + 2, du = 2x dx and

x = 0 ⇒ u = 2,

x = 1 ⇒ u = 3.

we obtain:

I =

∫ 3

2

4u3 du

= u4
∣∣∣∣3
2

= 81− 16

= 65.

� Another idea is to evaluate it as an indefinite

integral, rewrite u in terms of x and then use

limits for x.

Once again, using u = x2 + 2, du = 2x dx∫
8x
(
x2 + 2

)3
dx =

∫
4u3 du

= u4 + c

=
(
x2 + 2

)4
+ c∫ 1

0

8x
(
x2 + 2

)3
dx =

(
x2 + 2

)4 ∣∣∣∣1
0

= 81− 16

= 65.

Example 13–6: Evaluate

∫ 4

−4

x√
5− x

dx.

Solution: Using u = 5− x, du = −dx, x = 5− u and

x = −4 ⇒ u = 9, x = 4 ⇒ u = 1,

we obtain: I = −
∫ 1

9

5− u√
u
du

= 10u
1
2 − 2

3
u

3
2

∣∣∣∣9
1

= (30− 18)−
(

10− 2

3

)
=

8

3
.

Example 13–7: Evaluate

∫ 2

0

8ex
4/5x3 dx.

Solution: Substitution: u =
x4

5
, du =

4

5
x3dx.

New limits:

x = 0 ⇒ u = 0, x = 2 ⇒ u =
16

5

I = 10

∫ 16/5

0

eu du

= 10eu
∣∣∣∣16/5
0

= 10
(
e16/5 − e0

)
= 10

(
e16/5 − 1

)
.
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EXERCISES

Evaluate the following integrals: (Hint: Use substitution.)

13–1)

∫
(1 + x)3 dx

13–2)

∫
(x2 + 1)4 2x dx

13–3)

∫
e8t dt

13–4)

∫
x3e−x

4

dx

13–5)

∫
1

x+ 4
dx

13–6)

∫
3y

(y2 − 2)4
dy

13–7)

∫
2x3 + 3x

x4 + 3x2 + 1
dx

13–8)

∫
e5x

3

7x2 dx

13–9)

∫
e
√
x

√
x
dx

13–10)

∫
x(3x2 + 7)5 dx

Evaluate the following integrals: (Hint: Use substitution.)

13–11)

∫ √
7x− 12 dx

13–12)

∫
1

1 + 5z
dz

13–13)

∫
3

(2− x)2
dx

13–14)

∫
1√

x(1 +
√
x)2

dx

13–15)

∫
2y
√

5− 2y2 dy

13–16)

∫
e1/x

x2
dx

13–17)

∫
ex + 3x2

ex + x3 + 1
dx

13–18)

∫
6z2 + 8z + 3

z + 1
dz

13–19)

∫
lnx

x
dx

13–20)

∫
1

x (2 + ln x)3
dx
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Evaluate the following definite integrals:

13–21)

∫ 1

0

(x2 + 1)3x dx

13–22)

∫ 3

2

2ex
2

x dx

13–23)

∫ 1

0

x3
3
√
x4 + 1 dx

13–24)

∫ 1

0

(1 + t)3 dt

13–25)

∫ 2

1

ln(t2)

t
dt

13–26)

∫ 1

0

x+ 2x3

1 + x2 + x4
dx

13–27)

∫ 1

0

ex
2+x(2x+ 1) dx

13–28)

∫ ln 2

0

ex − e−x

ex + e−x
dx

13–29)

∫ 1/
√
3

0

(1 + 3t2)7t dt

13–30)

∫ e5

1

1 + 2 lnx

x
dx

ANSWERS

13–1)
(1 + x)4

4
+ c

13–2)
(x2 + 1)5

5
+ c

13–3)
e8t

8
+ c

13–4) − e
−x4

4
+ c

13–5) ln |x+ 4|+ c

13–6) − 1

2(y2 − 2)3
+ c

13–7)
1

2
ln |x4 + 3x2 + 1|+ c

13–8)
7

15
e5x

3

+ c

13–9) 2e
√
x + c

13–10)
(3x2 + 7)6

36
+ c



98 CHAPTER 13 - Substitution

13–11)
2

21
(7x− 12)3/2 + c

13–12)
1

5
ln |1 + 5z|+ c

13–13)
3

2− x
+ c

13–14)
−2

1 +
√
x

+ c

13–15) − 1

3
(5− 2y2)3/2 + c

13–16) −e1/x + c

13–17) ln |ex + x3 + 1|+ c

13–18) 3z2 + 2z + ln |z + 1|+ c

13–19)
(lnx)2

2
+ c

13–20)
−1

2(2 + ln x)2
+ c

13–21)
15

8

13–22) e9 − e4

13–23)
3

16
(24/3 − 1)

13–24)
15

4

13–25) (ln 2)2

13–26)
ln 3

2

13–27) e2 − 1

13–28) ln

(
5

4

)

13–29)
85

16

13–30) 30



Chapter 14

Area Between Curves

Let f and g be continuous functions with f(x) > g(x) on
[
a, b
]
.

Then the area of the region bounded by the curves

y = f(x), y = g(x)

and the vertical lines

x = a, x = b

is given by:

A =

∫ b

a

(
f(x)− g(x)

)
dx

Note that the area must be positive, in other words we should

integrate:

TOP function− BOTTOM function

Sometimes the curves intersect. In that case we have to find points

of intersection.

a b

A

f(x)

g(x)

x

y
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Example 14–1: Find the area between the curve y = x2, the

lines

x = 2, x = 4 and x−axis.

Solution: Let’s sketch the graph first:

x

y

O

y = x2

x = 2 x = 4

The integral that gives the shaded area is:

A =

∫ 4

2

(
x2 − 0

)
dx

=
x3

3

∣∣∣∣∣
4

2

=
43

3
− 23

3

=
56

3

Example 14–2: Find the area bounded by the lines y = 2x, y =

−3x, x = 2 and x = 5.

Solution: The lines y = 2x and y = −3x intersect at origin.

x

y

O

y = 2x

y = −3x

2 5

The area is:

A =

∫ 5

2

(
2x− (−3x)

)
dx

=

∫ 5

2

5x dx

=
5x2

2

∣∣∣∣∣
5

2

=
125

2
− 20

2

=
105

2
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Example 14–3: Find the area between the curve y =
1

x
, the

lines

x = 1, x = 3 and x−axis.

Solution: The graph is:

x

y

O

y =
1

x

x = 1 x = 3

The integral that gives the shaded area is:

A =

∫ 3

1

(
1

x
− 0

)
dx

= ln x

∣∣∣∣3
1

= ln 3− ln 1

= ln 3

Example 14–4: Find the area between the curves y = ex, e−x

and the lines x = 2.

Solution:

x

y

O

y = ex

y = e−x

x = 2
1

2

The area is:

A =

∫ 2

0

(
ex − e−x

)
dx

= ex + e−x
∣∣∣∣2
0

=
(
e2 + e−2

)
−
(
e0 + e0

)
= e2 + e−2 − 2
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Example 14–5: Find the area between the curve y = ex, the

lines

y = 1 and x = 4.

Solution: The region is between a curve and two lines. One is

horizontal, the other is vertical.

x

y

O

y = ex

y = 1

x = 4

1

4

The area is:

A =

∫ 4

0

(ex − 1) dx

= ex − x
∣∣∣∣4
0

=
(
e4 − 4

)
−
(
e0 − 0

)
= e4 − 5

Example 14–6: Find the area between the curve y = lnx, the

line x = 9 and x−axis.

Solution: Remember that ln 1 = 0 and ln 0 is undefined.

x

y

O

y = lnx

x = 4

1 9

The integral

∫
lnx dx can be evaluated using integration

by parts, where u = lnx and dv = dx. The result is∫
lnx dx = x lnx− x+ c

The area is:

A =

∫ 9

1

lnx dx

= x lnx− x
∣∣∣∣9
1

=
(
9 ln 9− 9

)
−
(
1 ln 1− 1

)
= 9 ln 9− 8
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Example 14–7: Find the area between the curve y = −x2 + 7

and the line y = 3.

Solution: First, we have to find intersection points.

−x2 + 7 = 3 ⇒ x = ±2

x

y

O

y = −x2 + 7

y = 3

−2 2

7

3

The area is:

A =

∫ 2

−2

(
− x2 + 7− 3

)
dx

= − x
3

3
+ 4x

∣∣∣∣2
−2

=

(
− 8

3
+ 8

)
−
(

8

3
− 8

)

=
32

3

Example 14–8: Find the area between the curve y = x2 − 4

and the line y = 4x+ 1.

Solution: First, we have to find intersection points.

x2 − 4 = 4x+ 1 ⇒ x2 − 4x− 5 = 0

(x+ 1)(x− 5) = 0 ⇒ x = 5 or x = −1

x

y

y = x2 − 4

y = 4x+ 1

−1

5

The area is:

A =

∫ 5

−1

(
4x+ 1− x2 + 4

)
dx

= − x
3

3
+ 2x2 + 5x

∣∣∣∣5
−1

=

(
− 125

3
+ 50 + 25

)
−
(

1

3
+ 2− 5

)
= 36
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Example 14–9: Find the area between the curves y = x2−10x+

24 and y = −x2 + 6x.

Solution: First, we have to find intersection points.

x2− 10x+ 24 = −x2 + 6x ⇒ 2x2− 16x+ 24 = 0

2(x− 2)(x− 6) = 0 ⇒ x = 2 or x = 6

x

y

O
y = x2 − 10x+ 24

y = −x2 + 6x

2 6

The area is:

A =

∫ 6

2

[(
− x2 + 6x

)
−
(
x2 − 10x+ 24

)]
dx

=

∫ 6

2

[
− 2x2 + 16x− 24

]
dx

= − 2x3

3
+ 8x2 − 24x

∣∣∣∣6
2

= (−144 + 288 + 144)−
(
− 16

3
+ 32− 48

)
=

64

3

Example 14–10: Find the area between the curves y = x2 and

y =
√
x.

Solution: First, we have to find intersection points.

x2 =
√
x ⇒ x = 0 or x = 1

x

y

O

y =
√
x

y = x2

1

1

The area is:

A =

∫ 1

0

(√
x− x2

)
dx

=
2

3
x3/2 − x3

3

∣∣∣∣1
0

=
2

3
− 1

3

=
1

3
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EXERCISES

Find the area of the region bounded by the given curves and lines:

14–1) y = 3x2 + 2x, x = 1, x = 3, x− axis.

14–2) y = −x2 + 8x, x = 0, x = 4, x− axis.

14–3) y = 12x3, x = 1, x = 2, x− axis.

14–4) y = 5− x4, x = 0, x = 1, x− axis.

14–5) y =
3

x2
, x = 1, x = 3, x− axis.

14–6) y =
1

x
, x = 2, x = 10, x− axis.

14–7) y =
8

(x+ 1)2
, x = 0, x = 3, x− axis.

14–8) y = ex, x = 2, x = 5, x− axis.

14–9) y = e−x, x = 0, x = 3, x− axis.

14–10) y = e2x, x = −2, x = 1, x− axis.

14–11) y = 3
√
x, x = 1, x = 9, x− axis.

14–12) y =
√
x, x = 0, x = 6, x− axis.

14–13) y = lnx, x = 2, x = 4, x− axis.

Find the area of the region bounded by the given curves and lines:

(Hint: First, find the intersection points.)

14–14) y = x2 + 1 and y = 2x+ 1.

14–15) y = −x2 + 5x and y = 6.

14–16) y = x2 − 6 and y = x.

14–17) y = −x2 + 25 and y = −2x+ 10.

14–18) y = 12x2 − 3 and x− axis.

14–19) y = 6x− 2x2 and x− axis.

14–20) y = x2 − 2x− 6 and y = −x2 + 2x.

14–21) y = x2 and y = 6− 5x2.

14–22) y = ex, y = e−x and x = 1.

14–23) y = e−x, y = 1 and x = 1.

14–24) y = 12
√
x and y = 3x.

14–25) y =
5

x
and y = 6− x.
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ANSWERS

14–1) 34

14–2)
128

3

14–3) 45

14–4)
24

5

14–5) 2

14–6) ln 5

14–7) 6

14–8) e5 − e2

14–9) 1− 1

e3

14–10)
e2 − e−4

2

14–11) 52

14–12) 4
√

6

14–13) 6 ln 2− 2

14–14)
4

3

14–15)
1

6

14–16)
125

6

14–17)
256

3

14–18) 2

14–19) 9

14–20)
64

3

14–21) 8

14–22) e+
1

e
− 2

14–23)
1

e

14–24) 128

14–25) 12− 5 ln 5
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Integration Techniques

Integration by Parts: Let’s remember the product rule for deriva-

tives: [
fg
]′

= f ′g + fg′

Integrate both sides to obtain:

fg =

∫
f ′g dx+

∫
fg′ dx

Rearranging, we obtain:∫
fg′ dx = fg −

∫
f ′g dx

or in simpler notation:∫
udv = uv −

∫
vdu

Example 15–1: Evaluate

∫
xex dx.

Solution: Here, udv = xex dx. Let’s choose u and dv as follows:

u = x ⇒ du = dx

dv = ex dx ⇒ v = ex

Using the integration by parts formula, we obtain:

∫
xex dx = xex −

∫
ex dx

= xex − ex + c.

Note that if we start with the alternative choice

u = ex ⇒ du = exdx

dv = x dx ⇒ v =
x2

2

we obtain ∫
xex dx =

x2

2
ex −

∫
x2

2
ex dx

which correct but not helpful. The second integral is

more complicated than the given integral.
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Example 15–2: Evaluate the integral∫
(x+ 1)e3x dx

Solution: We have to use integration by parts.

(x+ 1)e3x dx = udv

u = x+ 1 ⇒ du = dx

dv = e3x dx ⇒ v =
e3x

3

∫
(x+ 1)e3xdx = (x+ 1)

e3x

3
−
∫
e3x

3
dx

=
1

3
(x+ 1)e3x − 1

3

∫
e3x dx

=
1

3
(x+ 1)e3x − e3x

9
+ c

=
1

3
xe3x +

2

9
e3x + c

Example 15–3: Evaluate the integral∫
x3 lnx dx

Solution: We have to use integration by parts.

u = ln x ⇒ du =
dx

x

dv = x3 dx ⇒ v =
x4

4

∫
x3 lnx dx =

x4

4
lnx−

∫
x4

4

dx

x

=
x4 lnx

4
− 1

4

∫
x3 dx

=
x4 lnx

4
− x4

16
+ c.
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Example 15–4: Evaluate

∫
lnx dx.

Solution: u = lnx ⇒ du =
dx

x

dv = dx ⇒ v = x

Using the integration by parts formula, we obtain:

∫
lnx dx = x lnx−

∫
x
dx

x

= x lnx−
∫
dx

= x lnx− x+ c.

Example 15–5: Evaluate

∫
ln2 x dx.

Solution: u = ln2 x ⇒ du =
2 lnx

x
dx

dv = dx ⇒ v = x

Using the integration by parts formula, we obtain:

∫
ln2 x dx = x ln2 x−

∫
x

2 lnx

x
dx

= x ln2 x− 2

∫
lnx dx

= x ln2 x− 2(x lnx− x) + c

= x ln2 x− 2x lnx+ 2x+ c

Definite Integrals using Integration by Parts: It is the same

formula but we have integration limits.

∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du

Don’t forget the limits for the uv term!

Example 15–6: Evaluate

∫ 1

0

xe−x dx.

Solution: u = x ⇒ du = dx

dv = e−x dx ⇒ v = −e−x

Using the formula, we obtain:

∫ 1

0

xe−x dx = −xe−x
∣∣∣∣1
0

−
∫ 1

0

(−e−x) dx

= −xe−x
∣∣∣∣1
0

+

∫ 1

0

e−x dx

=
(
− xe−x − e−x

) ∣∣∣∣1
0

=
(
− e−1 − e−1

)
+
(

0 + 1
)

= 1− 2e−1
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Example 15–7: Evaluate

∫ e

1

x lnx dx.

Solution: u = lnx ⇒ du =
dx

x

dv = x dx ⇒ v =
x2

2

Using the formula, we obtain:

∫ e

1

x lnx dx =
x2

2
lnx

∣∣∣∣e
1

−
∫ e

1

x2

2

dx

x

=
x2

2
lnx

∣∣∣∣e
1

− 1

2

∫ e

1

x dx

=

(
x2

2
lnx− x2

4

) ∣∣∣∣∣
e

1

=

(
e2

2
ln e− e2

4

)
−
(

1

2
ln 1− 1

4

)

=
e2 + 1

4

Example 15–8: Evaluate

∫ e

1

lnx√
x
dx.

Solution: u = lnx ⇒ du =
dx

x

dv =
dx√
x
⇒ v = 2

√
x

Using the formula, we obtain:

∫ e

1

lnx√
x
dx = 2

√
x lnx

∣∣∣∣e
1

−
∫ e

1

2
√
x
dx

x

= 2
√
x lnx

∣∣∣∣e
1

−
∫ e

1

2√
x
dx

=
(

2
√
x lnx− 4

√
x
) ∣∣∣∣e

1

=
(

2
√
e ln e− 4

√
e
)
−
(

2
√

1 ln 1− 4
√

1
)

= 4− 2
√
e.
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Partial Fractions Expansion: Given an algebraic expression like

3

x− 2
+

5

x+ 4

we can write it with a common denominator as:

3

x− 2
+

5

x+ 4
=

8x+ 2

(x− 2)(x+ 4)
.

To evaluate the integrals like

∫
8x+ 2

(x− 2)(x+ 4)
dx we have to

reverse this process.

8x+ 2

(x− 2)(x+ 4)
=

A

x− 2
+

B

x+ 4

8x+ 2 = A(x+ 4) +B(x− 2)

x = 2 ⇒ A =
18

6
= 3

x = −4 ⇒ B =
−30

−6
= 5

Now, the integral can easily be evaluated in terms of logarithms.

For a given rational function
P (x)

Q(x)
, keep in mind the following:

� If degree of P (x) is greater than (or equal to) the degree of

Q(x), divide them using polynomial division.

� If Q(x) contains a power of the type (ax+ b)n, include all

the terms

A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ An

(ax+ b)n

in the expansion.

Example 15–9: Evaluate

∫
4x+ 4

(x− 3)(x− 2)
dx.

Solution:
4x+ 4

(x− 3)(x− 2)
=

A

x− 3
+

B

x− 2

4x+ 4 = A(x− 2) +B(x− 3)

x = 3 ⇒ A = 16

x = 2 ⇒ B = −12

∫ (
16

x− 3
− 12

x− 2

)
dx

= 16 ln |x− 3| − 12 ln |x− 2|+ c

Example 15–10: Evaluate

∫
10x+ 15

x2 + 5x
dx.

Solution:
10x+ 15

x2 + 5x
=
A

x
+

B

x+ 5

10x+ 15 = A(x+ 5) +Bx)

x = −5 ⇒ B = 7

x = 0 ⇒ A = 3

∫ (
3

x
+

7

x+ 5

)
dx = 3 ln |x|+ 7 ln |x+ 5|+ c



112 CHAPTER 15 - Integration Techniques

Example 15–11: Evaluate∫
13x2 − 65x+ 40

x3 − 9x2 + 20x
dx

Solution:

13x2 − 65x+ 40

x3 − 9x2 + 20x
=

13x2 − 65x+ 40

x(x− 4)(x− 5)

=
A

x
+

B

x− 4
+

C

x− 5

13x2−65x+40 = A(x−4)(x−5)+Bx(x−5)+Cx(x−4)

We can find A,B,C as follows:

x = 0 ⇒ A =
40

20
= 2

x = 4 ⇒ B =
−12

−4
= 3

x = 5 ⇒ C =
40

5
= 8

∫ (
2

x
+

3

x− 4
+

8

x− 5

)
dx

= 2 ln |x|+3 ln |x−4|+8 ln |x−5|+c

Example 15–12: Evaluate∫
dx

x2 − a2

where a 6= 0.

Solution:
1

x2 − a2
=

1

(x− a)(x+ a)

=
A

x− a
+

B

x+ a

1 = A(x+ a) +B(x− a)

We can find A and B as follows:

x = a ⇒ A =
1

2a

x = −a ⇒ B =
1

−2a

∫
dx

x2 − a2
=

∫ (
1

2a

1

x− a
− 1

2a

1

x+ a

)
dx

=
1

2a

(
ln |x− a| − ln |x+ a|

)
+ c
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Example 15–13: Evaluate∫
10x2 − 22x+ 7

x(x− 1)2
dx

Solution:
10x2 − 22x+ 7

x(x− 1)2
=
A

x
+

B

x− 1
+

C

(x− 1)2

10x2 − 22x+ 7 = A(x− 1)2 +Bx(x− 1) + Cx

We can solve these equations as follows:

x = 1 ⇒ C = 10− 22 + 7 = −5

x = 0 ⇒ A = 7

If we expand the parentheses, we see that

10x2 − 22x+ 7 = (A+B)x2 + (−2A−B + C)x+A

A+B = 10 ⇒ B = 3

∫ (
7

x
+

3

x− 1
− 5

(x− 1)2

)
dx

= 7 ln |x|+ 3 ln |x− 1|+ 5

x− 1
+ c

Example 15–14: Evaluate∫
5x3 − 12x2 − 6x− 5

x2 − 2x− 3
dx

Solution: First, we have to make a polynomial division to obtain:

5x3 − 12x2 − 6x− 5

x2 − 2x− 3
= 5x− 2 +

5x− 11

x2 − 2x− 3

= 5x− 2 +
5x− 11

(x− 3)(x+ 1)

5x− 11

(x− 3)(x+ 1)
=

A

x− 3
+

B

x+ 1

5x− 11 = A(x+ 1) +B(x− 3)

x = 3 ⇒ A = 1

x = −1 ⇒ B = 4

∫ (
5x− 2 +

1

x− 3
+

4

x+ 1

)
dx

=
5

2
x2 − 2x+ ln |x− 3|+ 4 ln |x+ 1|+ c
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EXERCISES

Evaluate the following integrals.

15–1)

∫
(1 + x) e2x dx

15–2)

∫ √
x lnx dx

15–3)

∫
xeax dx

15–4)

∫
x2 lnx dx

15–5)

∫
lnx√
x
dx

15–6)

∫
x2ex dx

15–7)

∫
ln3 x dx

15–8)

∫
xp lnx dx

Evaluate the following definite integrals.

15–9)

∫ 2

0

xe−x dx

15–10)

∫ 5

1

xe−3x dx

15–11)

∫ 2

1

x lnx dx

15–12)

∫ 4

1

x3 lnx dx

15–13)

∫ 4

1

lnx

x3
dx

15–14)

∫ 5

2

ln(4x) dx

15–15)

∫ 3

1

4xe2x dx

15–16)

∫ 8

1

lnx

x1/3
dx
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Evaluate the following integrals.

15–17)

∫
60

x2 + 6x
dx

15–18)

∫
5x+ 2

x2 − x
dx

15–19)

∫
6

2x2 + 3x
dx

15–20)

∫
1

x2 + x− 6
dx

15–21)

∫
40

x2 − 16
dx

15–22)

∫
24x

4x2 − 24x+ 27
dx

15–23)

∫
4x+ 16

x3 − 4x
dx

15–24)

∫
3x2 + 30

x3 − 7x2 + 10x
dx

15–25)

∫
80

x3 − 4x2
dx

15–26)

∫
12

(x+ 5)(x+ 1)2
dx

ANSWERS

15–1)
(1 + 2x) e2x

4
+ c

15–2)
2

3
x3/2 lnx− 4

9
x3/2 + c

15–3)
xeax

a
− eax

a2
+ c

15–4)
x3

3

(
lnx− 1

3

)
+ c

15–5) 2
√
x lnx− 4

√
x+ c

15–6) x2ex − 2xex + 2ex + c

15–7) x ln3 x− 3x ln2 x+ 6x lnx− 6x+ c

15–8)
xp+1 lnx

p+ 1
− xp+1

(p+ 1)2
+ c
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15–9) 1− 3e−2

15–10)
4

9
e−3 − 16

9
e−15

15–11) 2 ln 2− 3

4

15–12) 128 ln 2− 255

16

15–13)
15

64
− ln 2

16

15–14) 3 ln 4 + 5 ln 5− 2 ln 2− 3

15–15) 5e6 − e2

15–16) 18 ln 2− 27

4

15–17) 10 ln |x| − 10 ln |x+ 6|+ c

15–18) 7 ln |x− 1| − 2 ln |x|+ c

15–19) 2 ln |x| − 2 ln |2x+ 3|+ c

15–20)
1

5
ln |x− 2| − 1

5
ln |x+ 3|+ c

15–21) 5 ln |x− 4| − 5 ln |x+ 4|+ c

15–22) 9 ln |2x− 9| − 3 ln |2x− 3|+ c

15–23) 3 ln |x− 2| − 4 ln |x|+ ln |x+ 2|+ c

15–24) 7 ln |x− 5| − 7 ln |x− 2|+ 3 ln |x|+ c

15–25)
20

x
+ 5 ln |x− 4| − 5 ln |x|+ c

15–26) − 3

x+ 1
− 3

4
ln |x+ 1|+ 3

4
ln |x+ 5|+ c



Chapter 16

Partial Derivatives

The partial derivative of f(x, y) with respect to x at the point

(a, b) is defined as:

∂f

∂x
(a, b) = lim

h→ 0

f(a+ h, b)− f(a, b)

h

We use several different notations to denote partial derivatives:

fx,
∂f

∂x
,

∂f

∂x

∣∣∣∣
(a,b)

etc.

Second derivatives for z = z(x, y) are:

zxx =
∂2z

∂x2
, zxy =

∂2z

∂y ∂x

Third and higher order derivatives are denoted similarly.

When we evaluate the partial derivative of a function with

respect to a certain variable, we keep all the other variables

fixed!

Example 16–1: Find fx and fy for f(x, y) = x5 + 7x2y3 + 4y2.

Solution: To find derivative with respect to x, we treat y as a

constant and vice versa:

fx = 5x4 + 14xy3

fy = 21x2y2 + 8y

Example 16–2: Find fxy and fyx where

f(x, y) = x ln y + 4xy − yex

Solution: fx = ln y + 4y − yex

⇒ fxy =
∂2f

∂y ∂x
=

1

y
+ 4− ex

fy =
x

y
+ 4x− ex

⇒ fyx =
∂2f

∂x ∂y
=

1

y
+ 4− ex
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Theorem: If the functions fxy and fyx are continuous in a disk

containing (a, b), then fxy(a, b) = fyx(a, b)

Chain Rule: Suppose z is a differentiable function of the vari-

ables x1, x2, . . . , xn and each xi is a differentiable function of the

variables u1, u2, . . . , um. Then,

∂z

∂ui
=

∂z

∂x1

∂x1
∂ui

+
∂z

∂x2

∂x2
∂ui

+ · · ·+ ∂z

∂xn

∂xn
∂ui

For example, if z = z(x, y) and x = x(t), y = y(t) then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

Another example is:

f = f(x, y, z), x = x(s, t), y = y(s, t), z = z(s, t)

⇒ ∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
+
∂f

∂z

∂z

∂s

Example 16–3: Let f = xy + x2z where x = t2, y = et and

z = e2t. Find
df

dt
.

Solution:
df

dt
=

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

= (y + 2xz)2t+ xet + x22e2t

= (et + 2t2e2t)2t+ t2et + 2t4e2t

= (2t+ t2)et + (4t3 + 2t4)e2t

We can also start from f = t2et + t4e2t.

Example 16–4: Let z = x2 + y2 + 8xy x = 2v+ 4w, y = 5vw.

Find
∂z

∂v
.

Solution:
∂z

∂v
=

∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

= (2x+ 8y)2 + (2y + 8x)5w

= (4v + 8w + 40vw)2 + (10vw + 16v + 32w)5w

= 8v + 16w + 160vw + 50vw2 + 160w2

Alternatively, we can insert the values of x and y in the

beginning:

z = (2v + 4w)2 + (5vw)2 + 8(2v + 4w)(5vw)

z = 4v2 + 16vw + 16w2 + 25v2w2 + 80v2w + 160vw2

∂z

∂v
= 8v + 16w + 50vw2 + 160vw + 160w2



CHAPTER 16 - Partial Derivatives 119

Implicit Differentiation: If F (x, y) = const. is a function that

defines y in terms of x implicitly, then

dF

dx
=
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
= 0

∂F

∂x
+
∂F

∂y

dy

dx
= 0

⇒ dy

dx
= − Fx

Fy

Example 16–5: Using the equation x2 + xy4 + z2 = 12, find
∂z

∂y
.

Solution: Here, F = x2 + xy4 + z2, so:

∂z

∂y
= − Fy

Fz

= − 4xy3

2z

In this example, it is possible to solve for z explicitly:

z =
√

12− x2 − xy4

∂z

∂y
=

1

2

(
12− x2 − xy4

)−1/2
(−4xy3)

= − 4xy3

2
(

12− x2 − xy4
)1/2

= − 4xy3

2z

Example 16–6: Find zx at (3, 4, 1) using the equation

xy +
2x

z
− y ln z = 18

Solution: Derivative of both sides with respect to x gives:

y +
2

z
− 2x

z2
zx −

y

z
zx = 0

⇒ zx =
y +

2

z
2x

z2
+
y

z

zx(3, 4, 1) =
4 + 2

6 + 4
=

3

5

Example 16–7: Find zy(4, 2, 1) using the equation

xz3 − 3x

y
+ y ln z = 10

Solution: Using the formula, we obtain:

zy = − Fy

Fz

= −

3x

y2
+ ln z

3xz2 +
y

z

zy(4, 2, 1) = − 3 + 0

12 + 2
= − 3

14
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EXERCISES

Find fx and fy for the following functions:

16–1) f(x, y) = 1 + 5x+ 7xy2 − 20y4

16–2) f(x, y) = 4x3y5

16–3) f(x, y) =
x2

y4

16–4) f(x, y) = x2ey + y

16–5) f(x, y) = x lnx− yx2 ln y

16–6) f(x, y) = 4x+ 5yx
√
x− 3

y

Find fxx, fxy and fyy for the following functions:

16–7) f(x, y) = 6x− 8xy − 2y5

16–8) f(x, y) = 4x3 + 7y2

16–9) f(x, y) = y3ex

16–10) f(x, y) = lnx+ 5y

16–11) f(x, y) =
x5

y5

16–12) f(x, y) = e3x ln
(
y4
)

16–13) If 3xy + z3y − 12xyz = 20, find
∂z

∂x
.

16–14) If zxy + y4ez = 3, find
∂z

∂y
.

16–15) If 2xy5 + xyz + zey = 12 find
∂y

∂z
.

16–16) If x3y + y4z + z5w + w6 = 6 find
∂y

∂w
.

16–17) If y lnx+ x3 ln z + 2yz3 + xyz = 18 find
∂x

∂z
.

16–18) If xy2w3 + yzez + 3xy3 − 5x3w = 0 find
∂w

∂z
.

16–19) If f(x, y) = x2y3e−y, find
∂f

∂y
.

16–20) If f(x, y) = exy + x ln y, find fxy.

16–21) If x2z2 + 2xy + y3z5 = 24, find
∂z

∂y
.

16–22) If
x

y
+
y

z
= 1, find

∂z

∂x
.

16–23) If x2 + y4 + z8 +w10 = 4, find
∂z

∂x
at the point (1, 1, 1, 1).
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ANSWERS

16–1) fx = 5 + 7y2, fy = 14xy − 80y3.

16–2) fx = 12x2y5, fy = 20x3y4.

16–3) fx =
2x

y4
, fy = − 4x2

y5
.

16–4) fx = 2xey, fy = x2ey + 1.

16–5) fx = lnx+ 1− 2yx ln y, fy = −x2 ln y − x2.

16–6) fx = 4 +
15

2
y
√
x, fy = 5x

√
x+

3

y2
.

16–7) fxx = 0, fxy = −8, fyy = −40y3.

16–8) fxx = 24x, fxy = 0, fyy = 14.

16–9) fxx = y3ex, fxy = 3y2ex, fyy = 6yex.

16–10) fxx = − 1

x2
, fxy = 0, fyy = 0.

16–11) fxx =
20x3

y5
, fxy = − 25x4

y6
, fyy =

30x5

y7
.

16–12) fxx = 9e3x ln
(
y4
)
, fxy =

12e3x

y
, fyy = − 4e3x

y2
.

16–13)
∂z

∂x
= − 3y − 12yz

3z2y − 12xy

16–14)
∂z

∂y
= − zx+ 4y3ez

xy + y4ez

16–15)
∂y

∂z
= − xy + ey

10xy4 + xz + zey

16–16)
∂y

∂w
= − z5 + 6w5

x3 + 4y3z

16–17)
∂x

∂z
= −

x3

z
+ 6yz2 + xy

y
x

+ 3x2 ln z + yz

16–18)
∂w

∂z
= − yez + yzez

3xy2w2 − 5x3

16–19) x2(3y2 − y3)e−y

16–20) exy + xyexy +
1

y

16–21) − 2x+ 3y2z5

2x2z + 5y3z4

16–22)
z2

y2

16–23) − 1

4
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Chapter 17

Local Extrema

Second Derivative Test for Local Extrema: Suppose that

f(x, y) and its first and second partial derivatives are continuous

at and around the point (a, b) and also that

fx(a, b) = fy(a, b) = 0

Let’s calculate the second derivatives at (a, b):

A = fxx(a, b), B = fyy(a, b), C = fxy(a, b)

∆ (Delta) at (a, b) is defined as:

∆ = AB − C2

� If ∆ > 0 and A > 0 then f has a local minimum at (a, b).

� If ∆ > 0 and A < 0 then f has a local maximum at (a, b).

� If ∆ < 0 then f has a saddle point at (a, b).

� If ∆ = 0 then the test is inconclusive.

Example 17–1: Find the local extrema of

f(x, y) = x2 + 2y2 − 4y + 5

Solution: fx = 0 ⇒ 2x = 0

fy = 0 ⇒ 4y − 4 = 0

The only critical point is (x, y) = (0, 1)

fxx = 2, ⇒ A = 2

fyy = 4, ⇒ B = 4

fxy = 0, ⇒ C = 0

⇒ ∆ = 2 · 4− 0 = 8

∆ > 0, A > 0 ⇒ (0, 1) is a local minimum.



124 CHAPTER 17 - Local Extrema

Example 17–2: Find and classify the critical points of

f(x, y) = −x2 − 4y2 + 2xy + 12y + 15

Solution: The first derivatives are:

fx = 0 ⇒ −2x+ 2y = 0

fy = 0 ⇒ −8y + 2x+ 12 = 0

The solution of this system of equations is:

y = x ⇒ −8x+ 2x+ 12 = 0

⇒ 6x = 12

⇒ x = 2, y = 2.

The only critical point is (2, 2)

fxx = −2 ⇒ A = −2

fyy = −8 ⇒ B = −8

fxy = 2 ⇒ C = 2

∆ = (−2) · (−8)− 22 = 12

∆ > 0, A < 0 ⇒ (2, 2) is a local maximum.

Example 17–3: Find and classify the critical points of

f(x, y) = x2 − y2 + 1

Solution: The first derivatives are:

fx = 0 ⇒ 2x = 0

fy = 0 ⇒ −2y = 0

The solution is x = 0, y = 0.

fxx = 2 ⇒ A = 2

fyy = −2 ⇒ B = −2

fxy = 0 ⇒ C = 0

∆ = 2 · (−2)− 0 = −4

∆ < 0 ⇒ (0, 0) is a saddle point.

Example 17–4: Find and classify the critical points of

f(x, y) = 3xy − 12x+ 5

Solution: fx = 0 ⇒ 3y − 12 = 0

fy = 0 ⇒ 3x = 0

The solution is x = 0, y = 4.

fxx = 0 ⇒ A = 0

fyy = 0 ⇒ B = 0

fxy = 3 ⇒ C = 3

∆ = 0− 32 = −9

∆ < 0 ⇒ (0, 4) is a saddle point.
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Example 17–5: Find and classify the critical points of

f(x, y) = 2x3 − 3x2 + 12xy − 2y2

Solution: The first derivatives give:

fx = 0 ⇒ 6x2 − 6x+ 12y = 0

fy = 0 ⇒ 12x− 4y = 0

The second equation gives y = 3x. Using y = 3x in the

first equation we obtain:

6x2 + 30x = 0 ⇒ x = 0, x = −5

x = 0 ⇒ y = 0

x = −5 ⇒ y = −15

There are two critical points: (0, 0) and (−5,−15).

fxx = 12x− 6, fyy = −4, fxy = 12

� For (0, 0):

A = −6, B = −4, C = 12

⇒ ∆ = −120

∆ < 0 ⇒ (0, 0) is a saddle point.

� For (−5,−15):

A = −66, B = −4, C = 12

⇒ ∆ = 120

∆ > 0, A < 0

⇒ (−5,−15) is a local maximum.

Example 17–6: Find and classify the critical points of

f(x, y) = x2y − 4xy +
y3

48
+ 3y

Solution: fx = 0 ⇒ 2xy − 4y = 0

fy = 0 ⇒ x2 − 4x+
y2

16
+ 3 = 0

The first equation gives: x = 2 or y = 0.

x = 2 ⇒ y2 = 16 ⇒ y = ±4.

y = 0 ⇒ x2−4x+ 3 = 0 ⇒ x = 1 or x = 3.

Critical points: (2, 4) , (2,−4) , (1, 0) and (3, 0).

fxx = 2y, fyy =
y

8
, fxy = 2x− 4

� For (2, 4):

A = 8, B =
1

2
, C = 0 ⇒ ∆ = 4

∆ > 0 and A > 0 ⇒ local minimum.

� For (2,−4):

A = −8, B = − 1

2
, C = 0 ⇒ ∆ = 4

∆ > 0 and A < 0 ⇒ local maximum.

� For (1, 0):

A = 0, B = 0, C = −2 ⇒ ∆ = −4

∆ < 0 ⇒ saddle point.

� For (3, 0):

A = 0, B = 0, C = 2 ⇒ ∆ = −4

∆ < 0 ⇒ saddle point.
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EXERCISES

Find and classify all the critical points the following functions:

17–1) f(x, y) = 6x2 + y2 + 15x− 7y + 6

17–2) f(x, y) = 4x2 + 6xy + 3y2 + 5x− y + 16

17–3) f(x, y) = x2 + 2xy − 2y2 + 3x+ 6y + 8

17–4) f(x, y) = −4x2 − y2 + 12x+ 9

17–5) f(x, y) = 2x2 + 3xy + y2 + 20x+ 40y

17–6) f(x, y) = −x2 + 4xy + 14y2 + x+ 2

17–7) f(x, y) = x2 + 8xy + 18y2 − 16y + 13

17–8) f(x, y) = 2x2 + 6xy + 2y2 + 44x+ 16y

17–9) f(x, y) = −5x2 + 5xy − 3y2 + 14y + 8

17–10) f(x, y) = −3x2 − 2xy − y2 + 5x− 7y

17–11) f(x, y) = 4y(x− 6) + (x− 6)2

17–12) f(x, y) = (x− 1)2 + (y + 1)2

Find and classify all the critical points the following functions:

17–13) f(x, y) = 4x3 + 2xy +
y3

2

17–14) f(x, y) = 5x3 − 3xy − 5y3

17–15) f(x, y) = 2x3 + 4y3 − 9x2 − 6y2 + 24

17–16) f(x, y) = x3 + y3 + 3x2 − 3y2 + 6

17–17) f(x, y) = −25x3 + 100x2 + 20xy + 4y2

17–18) f(x, y) = x3 + 4xy + 27y3

17–19) f(x, y) = 3x3 + 18xy + 3y3

17–20) f(x, y) = x4 + 8y2 − 32xy

17–21) f(x, y) = 4xy − x4 − y4

17–22) f(x, y) = x2 − x2y + 12y3
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ANSWERS

17–1)
(
x, y
)

=

(
− 5

4
,
7

2

)
local minimum.

17–2)
(
x, y
)

=

(
−3,

19

6

)
local minimum.

17–3)
(
x, y
)

=

(
−2,

1

2

)
saddle point .

17–4)
(
x, y
)

=

(
3

2
, 0

)
local maximum .

17–5)
(
x, y
)

= (−80, 100) saddle point .

17–6)
(
x, y
)

=

(
7

18
,− 1

18

)
saddle point .

17–7)
(
x, y
)

= (−16, 4) local minimum .

17–8)
(
x, y
)

= (4,−10) saddle point .

17–9)
(
x, y
)

= (2, 4) local maximum .

17–10)
(
x, y
)

=

(
3,− 13

2

)
local maximum .

17–11)
(
x, y
)

= (6, 0) saddle point .

17–12)
(
x, y
)

= (1,−1) local minimum .

17–13)
(
x, y
)

= (0, 0) saddle point,(
x, y
)

=

(
− 1

3
,− 2

3

)
local maximum .

17–14)
(
x, y
)

= (0, 0) saddle point,(
x, y
)

=

(
− 1

5
,
1

5

)
local minimum .

17–15)
(
x, y
)

= (0, 0) local maximum,(
x, y
)

= (3, 1) local minimum,(
x, y
)

= (0, 1) and (3, 0) saddle points.

17–16)
(
x, y
)

= (−2, 0) local maximum,(
x, y
)

= (0, 2) local minimum,(
x, y
)

= (0, 0) and (−2, 2) saddle points.
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17–17)
(
x, y
)

= (2,−5) saddle point,(
x, y
)

= (0, 0) local minimum .

17–18)
(
x, y
)

= (0, 0) saddle point,(
x, y
)

=

(
− 4

9
,− 4

27

)
local maximum .

17–19)
(
x, y
)

= (0, 0) saddle point,(
x, y
)

= (−2,−2) local maximum .

17–20)
(
x, y
)

= (4, 8) and (−4,−8) local minima,(
x, y
)

= (0, 0) saddle point.

17–21)
(
x, y
)

= (1, 1) and (1,−1) local maxima,(
x, y
)

= (0, 0) saddle point.

17–22) At
(
x, y
)

= (0, 0) test fails.(
x, y
)

= (6, 1) saddle point.
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Lagrange Multipliers

Sometimes we need to find maximum or minimum of a function

subject to certain constraints.

For example: Find the maximum of

f(x, y) = xy

subject to the constraint

2x+ 5y = 20

In this equation, the variables x and y can not take on any values.

They have to satisfy the constraint given by 2x+ 5y = 20. So we

can not just evaluate derivatives and set them equal to zero. But

we can eliminate y to obtain:

y =
20− 2x

5

f(x) = x

(
4− 2

5
x

)
= 4x− 2

5
x2

f ′(x) = 4− 4

5
x = 0 ⇒ x = 5, y = 2

It is not always possible to eliminate variables in this way. Lagrange

multipliers is an alternative method. We consider the equations:

∂f

∂x
= λ

∂g

∂x

∂f

∂y
= λ

∂g

∂y

g(x, y) = constant

This is a set of three equation in three unknowns x, y and λ. If

the maximum and minimum of f exist, they are among the points

in the solution set.

Note that this method won’t work for the exceptional case

∂g

∂x
=
∂g

∂y
= 0
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Example 18–1: Find critical points of the function

f(x, y) = 3xy

subject to the constraint g(x, y) = 5x+ 2y = 20.

Solution: Using the equations

fx = λ gx

fy = λ gy

and the constraint, we obtain three equations in three

unknowns:
3y = 5λ

3x = 2λ

5x+ 2y = 20

We can eliminate λ as follows:

3y

5
= λ =

3x

2

⇒ 2y = 5x

Now using the third equation we obtain:

5x+ 5x = 20

10x = 20

⇒ x = 2

y =
5

2
x ⇒ y = 5

The critical point is:
(
2, 5
)

Example 18–2: Find critical points of the function

f(x, y) = 4x2+y2 subject to the constraint g(x, y) = 6x+5y = 34.

Solution: Using the equations

fx = λ gx

fy = λ gy

and the constraint, we obtain:

8x = 6λ

2y = 5λ

6x+ 5y = 34

We can eliminate λ as follows:

8x

6
= λ =

2y

5

⇒ 40x = 12y ⇒ 10x = 3y

Now using the third equation we obtain:

6x+
50x

3
= 34

68x = 34 · 3

⇒ x =
3

2

y =
10x

3
⇒ y = 5

The critical point is: (
3

2
, 5

)
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Example 18–3: Find critical points of the function

f(x, y) = x3y2

subject to the constraint

g(x, y) = 24x+ y = 10

Solution: We obtain the set of equations:

3x2y2 = 24λ

2x3y = λ

24x+ y = 10

We can eliminate λ as follows:

3x2y2

24
= λ = 2x3y

If x 6= 0 and y 6= 0 we obtain

⇒ 3y = 48x ⇒ y = 16x

24x+ 16x = 10

40x = 10

⇒ x =
1

4

y = 16x ⇒ y = 4

We should also consider the cases x = 0 and y = 0

separately. The critical points are:(
1

4
, 4

)
,
(
0, 10

)
,

(
5

12
, 0

)

Example 18–4: Find critical points of the function

f(x, y) = 4x+ 8y

subject to the constraint

g(x, y) = x2 + 5y2 = 5

Solution: We obtain the set of equations:

4 = 2λx

8 = 10λy

x2 + 5y2 = 5

We can eliminate λ as follows:

4

2x
= λ =

8

10y

⇒ 40y = 16x ⇒ y =
2x

5

Replacing y in the equation x2 + 5y2 = 5, we obtain

x2 +
4x2

5
= 5

9x2

5
= 5

x2 =
25

9

⇒ x = ±5

3

y =
2x

5
, therefore the critical points are:(

5

3
,
2

3

)
,

(
− 5

3
,− 2

3

)
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Example 18–5: Find critical points of the function

f(x, y) = x2 − 6xy + y2

subject to the constraint

g(x, y) = x+ y = 6

Solution: We obtain the set of equations:

2x− 6y = λ

−6x+ 2y = λ

x+ y = 6

We can eliminate λ as follows:

2x− 6y = λ = −6x+ 2y

⇒ 48x = 8y

⇒ x = y

x+ y = 6

⇒ 2x = 6

⇒ x = 3, y = 3

The critical point is:
(
3, 3
)

Example 18–6: Find critical points of the function

f(x, y) = 36x+ 2y

subject to the constraint

g(x, y) = 9x2 + 2y = 48

Solution: We obtain the set of equations:

36 = 18xλ

2 = 2λ

9x2 + 2y = 48

We can eliminate λ as follows:

36

18x
= λ =

2

2
= 1

⇒ 18x = 36

⇒ x = 2

Using 9x2 + 2y = 48 we obtain:

36 + 2y = 48

⇒ 2y = 12

⇒ y = 6

The critical point is:
(
2, 6
)
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EXERCISES

Using the method of Lagrange Multipliers, find all critical points

of the function f(x, y) subject to the given constraint:

18–1) f(x, y) = xy, 2x+ y = 4.

18–2) f(x, y) = 4xy + 50, 3x− 4y = 24.

18–3) f(x, y) = x2 + y2, x+ 3y = 10.

18–4) f(x, y) = x2 + 2y2, x+ 4y = 36.

18–5) f(x, y) = x2 + y2, 12x+ 8y = 13.

18–6) f(x, y) = x2 − y2, 3x+ y = 8.

18–7) f(x, y) = 4x2 − y2, 4x+ y = 6.

18–8) f(x, y) = xy, 9x2 + 4y2 = 72.

18–9) f(x, y) = xy, 16x2 + 25y2 = 3200.

18–10) f(x, y) = xy, x2 + 36y2 = 18.

Using the method of Lagrange Multipliers, find all critical points

of the function f(x, y) subject to the given constraint:

18–11) f(x, y) = x2 − y2, x2 + y2 = 9.

18–12) f(x, y) = x2 − 3y2, x2 + y2 = 4.

18–13) f(x, y) = x2 − 3xy + y2, x2 + y2 = 8.

18–14) f(x, y) = x2 + 18xy + 9y2, x2 + 9y2 = 2.

18–15) f(x, y) = xy2, 3x+ 2y = 18.

18–16) f(x, y) = xy4, x+ 30y = 75.

18–17) f(x, y) = 3x+ 4y, x2 + y2 = 100.

18–18) f(x, y) = x+ 2y, x2 + y2 = 45.

18–19) f(x, y) = 2x+ y, 5x2 + 2y2 = 130.

18–20) f(x, y) = 4x+ 4y, 16x2 + 2y2 = 9.
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Using the method of Lagrange Multipliers, find all critical points

of the function f(x, y) subject to the given constraint:

18–21) f(x, y) = 9x2 + 36xy + 16y2, 3x+ 4y = 24.

18–22) f(x, y) = 25x2 + 4xy + y2, 5x+ y = 10.

18–23) f(x, y) = x2 + 5xy + y2, x+ y = 12.

18–24) f(x, y) = 4x2 + 2xy + y2, 2x+ y = 8.

18–25) f(x, y) = 4x2 − 20xy + 25y2, 2x+ 5y = 20.

18–26) f(x, y) = x2 + 8xy + 4y2, x+ 2y = 1.

18–27) f(x, y) = 6x+ y, 3x2 + y = 6.

18–28) f(x, y) = x+ 2y, x2 + 32y = 96.

18–29) f(x, y) = x+ 3y, x2 + 18y = 63.

18–30) f(x, y) = 3x+ y, 75x2 + 10y = 8.

ANSWERS

18–1)
(
1, 2
)

18–2)
(
4,−3

)

18–3)
(
1, 3
)

18–4)
(
4, 8
)

18–5)

(
3

4
,
1

2

)

18–6)
(
3,−1

)

18–7)
(
2,−2

)

18–8)
(
2, 3
)
,
(
− 2,−3

)
,
(
− 2, 3

)
,
(
2,−3

)
.

18–9)
(
10, 8

)
,
(
− 10,−8

)
,
(
− 10, 8

)
,
(
10,−8

)
.

18–10)

(
3,

1

2

)
,

(
−3,− 1

2

)
,

(
−3,

1

2

)
,

(
3,− 1

2

)
.
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18–11)
(
0,±3

)
,
(
± 3, 0

)
.

18–12)
(
0,±2

)
,
(
± 2, 0

)
.

18–13)
(
2, 2
)
,
(
2,−2

)
,
(
− 2, 2

)
,
(
− 2,−2

)
.

18–14)

(
1,

1

3

)
,

(
1,− 1

3

)
,

(
−1,

1

3

)
,

(
−1,− 1

3

)
.

18–15)
(
2, 6
)
,
(
6, 0
)
.

18–16)
(
15, 2

)
,
(
75, 0

)
.

18–17)
(
6, 8
)
,
(
− 6,−8

)
.

18–18)
(
3, 6
)
,
(
− 3,−6

)
.

18–19)
(
4, 5
)
,
(
− 4,−5

)
.

18–20)

(
1

4
, 2

)
,

(
− 1

4
,−2

)
.

18–21)
(
4, 3
)

18–22)
(
1, 5
)

18–23)
(
6, 6
)

18–24)
(
2, 4
)

18–25)
(
5, 2
)

18–26)

(
1

2
,
1

4

)

18–27)
(
1, 3
)

18–28)
(
8, 1
)

18–29)
(
3, 3
)

18–30)

(
1

5
,
1

2

)
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Chapter 19

Least Squares Line

We know that a line passes through two given points. If we have

more than two points, they will not lie on a line unless specially

chosen. Still, we can find a line that passes close to them.

O

x

y

O

x

y
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Error

Error

Note that error is the vertical distance from the point to the line.

The least squares line is the line with minimum square error. We

do not directly add errors, because if we did that, positive and

negative errors would cancel each other.

If we are given the coordinates of n points:

x1 x2 · · · xn
y1 y2 · · · yn

and if we assume the equation of the line is:

y = ax+ b

then, the total squared error is:

E = (ax1 + b− y1)2 + (ax2 + b− y2)2 + · · ·+ (axn + b− yn)2

Note that, here, xi and yi are constant, a and b are variable. To

minimize this function, we have to find partial derivatives and set

them equal to zero.

∂E

∂a
= 2(ax1 + b− y1)x1 + · · ·+ 2(axn + b− yn)xn = 0

∂E

∂b
= 2(ax1 + b− y1) + · · ·+ 2(axn + b− yn) = 0

After simplifications, we obtain the system of equations:

(
x21 + · · ·+ x2n

)
a+

(
x1 + · · ·+ xn

)
b = x1y1 + · · ·+ xnyn(

x1 + · · ·+ xn
)
a+ nb = y1 + · · ·+ yn

It is easier to express this system using sigma notation:(
n∑

i=1

x2i

)
a+

(
n∑

i=1

xi

)
b =

n∑
i=1

xiyi

(
n∑

i=1

xi

)
a+ nb =

n∑
i=1

yi

The solution will give us the parameters of the least squares line:

y = ax+ b



CHAPTER 19 - Least Squares Line 139

Example 19–1: Find the least squares line for the following points:

x 1 3 5 7

y −1 2 2 3

Solution: Total squared error is:

E = (a+b+1)2+(3a+b−2)2+(5a+b−2)2+(7a+b−3)2

∂E

∂a
= 2(a+b+1)+2(3a+b−2)3+2(5a+b−2)5+2(7a+b−3)7 = 0

∂E

∂b
= 2(a+b+1)+2(3a+b−2)+2(5a+b−2)+2(7a+b−3) = 0

After simplifications, we obtain the system of equations:

84a+ 16b = 36

16a+ 4b = 6

Multiply the second equation by 4 and then subtract

from the first equation:

84a+ 16b = 36

64a+ 16b = 24

20a = 12 ⇒ a =
3

5

⇒ b =
6− 16a

4
= − 9

10

The least squares line is

y =
3

5
x− 9

10

An alternative method is to use the formula directly:

x 1 3 5 7

y −1 2 2 3

n∑
i=1

x2i = 12 + 32 + 52 + 72 = 84

n∑
i=1

xi = 1 + 3 + 5 + 7 = 16

n∑
i=1

xiyi = −1 + 6 + 10 + 21 = 36

n∑
i=1

yi = −1 + 2 + 2 + 3 = 6

⇒
84a+ 16b = 36

16a+ 4b = 6

The rest of the solution is the same.

a =
3

5
, b = − 9

10
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EXERCISES

Find the equation of the least squares line using the following data:

19–1) x 1 2 3

y 2 4 3

19–2) x 0 2 4

y −1 0 5

19–3) x 1 2 3 4

y −4 0 2 2

19–4) x 1 2 3 4

y 5 3 1 0

19–5) x 1 2 3 5

y −1 0 2 4

19–6) x −1 0 2 3

y 6 3 0 −1

Find the equation of the least squares line using the following data:

19–7) x −2 −1 0 1 2

y 1 3 2 4 5

19–8) x −2 −1 0 1 2

y 8 5 0 1 −2

19–9) x 0 1 2 3 4

y 10 6 2 0 0

19–10) x −1 1 2 3 5

y 6 0 1 −2 −4

19–11) x −2 0 2 4 6

y 1 3 2 4 5

19–12) x −3 −2 0 2 3

y −5 −2 0 −1 3
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ANSWERS

19–1) y =
1

2
x+ 2

19–2) y =
3

2
x− 5

3

19–3) y = 2x− 5

19–4) y = − 17

10
x+

13

2

19–5) y =
9

7
x− 16

7

19–6) y = − 17

10
x+

37

10

19–7) y = 0.9x+ 3

19–8) y = −2.4x+ 2.4

19–9) y = −2.6x+ 8.8

19–10) y = −1.6x+ 3.4

19–11) y = 0.45x+ 2.1

19–12) y = x− 1
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Chapter 20

Double Integrals

Consider the rectangle R =
[
a, b
]
×
[
c, d
]
. We can think of the

double integral of the function f(x, y) over R as the volume under

the graph of the function and above the xy−plane.

x

y

z

R

z = f(x, y)

Volume =

∫∫
R

f(x, y) dA

a b

c

d

x

y

O

R

If f(x, y) is continuous on R, we can evaluate the double integral

as follows:∫∫
R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx

=

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

=

∫ d

c

(∫ b

a

f(x, y) dx

)
dy
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Example 20–1: Evaluate the integral∫ 2

0

∫ 3

0

(
1 + xy2

)
dy dx

Solution: Note that, when we are evaluating the integral with

respect to y, we keep x constant.∫ 2

0

∫ 3

0

(
1 + xy2

)
dy dx =

∫ 2

0

(∫ 3

0

(
1 + xy2

)
dy

)
dx

=

∫ 2

0

(
y +

xy3

3

∣∣∣∣3
0

)
dx

=

∫ 2

0

(3 + 9x) dx

= 3x+
9x2

2

∣∣∣∣2
0

= 6 + 18

= 24

We can change the order of integration. We have to change the

order of the limits too.∫ 2

0

∫ 3

0

(
1 + xy2

)
dy dx =

∫ 3

0

∫ 2

0

(
1 + xy2

)
dx dy

=

∫ 3

0

(∫ 2

0

(
1 + xy2

)
dx

)
dy

=

∫ 3

0

(
x+

x2y2

2

∣∣∣∣2
0

)
dx

=

∫ 3

0

(2 + 2y2) dy

= 2y +
2y3

3

∣∣∣∣3
0

= 6 + 18

= 24
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Example 20–2: Evaluate the integral∫ 4

0

∫ 6

2

5x
√
x

4y
dy dx

Solution: ∫ 4

0

∫ 6

2

5x
√
x

4y
dy dx =

5

4

∫ 4

0

∫ 6

2

x3/2 · 1

y
dy dx

=
5

4

∫ 4

0

x3/2

(
ln y

∣∣∣∣6
2

)
dx

=
5

4

(
ln 6− ln 2

) ∫ 4

0

x3/2 dx

=
5

4
ln 3 · x

5/2

5/2

∣∣∣∣4
0

=
5

4
· 2

5
ln 3 · 45/2

=
1

2
ln 3 · 25

= 16 ln 3

Example 20–3: Evaluate the integral∫ 1

0

∫ 3

2

2ye−3xey
2

dy dx

Solution: ∫ 1

0

∫ 3

2

2ye−3xey
2

dy dx =

∫ 1

0

e−3x
(∫ 3

2

2yey
2

dy

)
dx

=

∫ 1

0

e−3x
(∫ 9

4

eu du

)
dx

=

∫ 1

0

e−3x

(
eu
∣∣∣∣9
4

)
dx

=
(
e9 − e4

) ∫ 1

0

e−3x dx

=
(
e9 − e4

)(e−3x
−3

∣∣∣∣1
0

)

=
(
e9 − e4

)(e−3
−3
− e0

−3

)

=
1

3

(
e9 − e4

)(
1− e−3

)
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EXERCISES

Evaluate the following double integrals:

20–1)

∫ 2

0

∫ 1

0

(
8y3 + xy

)
dy dx

20–2)

∫ 4

0

∫ 2

0

(
2 + 3x2 + 4y

)
dy dx

20–3)

∫ 4

1

∫ 1

0

√
xy dy dx

20–4)

∫ 1

0

∫ 15

9

x2
√
x dy dx

20–5)

∫ 5

3

∫ 9

6

x

y2
dy dx

20–6)

∫ 6

4

∫ 10

5

x

y
dy dx

20–7)

∫ 2

1

∫ 1

0

(1 + x2)ey dy dx

20–8)

∫ 1

0

∫ 1

0

ey−2x dy dx

20–9)

∫ 2

1

∫ 7

2

e5x

y
dy dx

20–10)

∫ 3

1

∫ 4

2

1

(xy)3
dy dx

Evaluate the following double integrals:

20–11)

∫ 1

0

∫ 4

0

(
x3 + 1

)
x2y dy dx

20–12)

∫ 9

1

∫ 3

0

√
y + 1

x
dy dx

20–13)

∫ 5

1

∫ 2

0

5y + 3√
2x− 1

dy dx

20–14)

∫ 11

7

∫ 3

1

y

y2 + 6
dy dx

20–15)

∫ 1

0

∫ 5

1

yex

ex + 1
dy dx

20–16)

∫ 1

0

∫ 1

0

xexy dy dx

20–17)

∫ 9

3

∫ 2

1

lnx

xy
dy dx

20–18)

∫ 2

0

∫ 3

2

24x

y2ex2 dy dx

20–19)

∫ 2

0

∫ 2

0

18x3y3(
x4 + 2

)2 dy dx
20–20)

∫ 1

0

∫ 1

0

x
(
1 + xy

)4
dy dx
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ANSWERS

20–1) 5

20–2) 176

20–3)
28

9

20–4)
12

7

20–5)
4

9

20–6) 10 ln 2

20–7)
10

3

(
e− 1

)

20–8)
1

2

(
e− 1

)(
1− e−2

)

20–9)
1

5

(
e10 − e5

)
ln

7

2

20–10)
1

24

20–11) 4

20–12)
56

3

20–13) 32

20–14) 2 ln
15

7

20–15) 12 ln
e+ 1

2

20–16) e− 2

20–17)
3

2
ln2 3 · ln 2

20–18) 2
(
1− e−4

)

20–19) 8

20–20)
19

10
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Chapter 21

Separable Differential Equations

Example 21–1: Solve the differential equation

y′ = −4y2x3

Solution: First we have to write this equation in the form:

dy

dx
= −4y2x3

− dy
y2

= 4x3dx

Now we can solve this by integrating both sides:∫
−y−2dy =

∫
4x3dx

y−1 = x4 + c

1

y
= x4 + c

y =
1

x4 + c

Example 21–2: Solve the intial value problem

y′ = x2e−y, y(2) = 0

Solution: This time, we will solve the equation and then also find

the integration constant:

dy

dx
= x2e−y

∫
eydy =

∫
x2dx

ey =
x3

3
+ c

x = 2 ⇒ y = 0

e0 =
23

3
+ c ⇒ c = − 5

3

y = ln

(
x3 − 5

3

)
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EXERCISES

Find the solution of the following differential equations:

21–1) y′ = 1 +
1

x

21–2) y′ = − x

2y

21–3) y′ = x2y2

21–4) y2y′ = 4x

21–5) xy′ = −y2

21–6) y′ = 2xe−y

21–7) yy′ = 1− 2e−4x

21–8) yy′ = 6e3x−y

21–9) y′ =
1

5− 2y

21–10) y′ =
y

x

21–11) y′ = x2y

21–12) y′ = −y

Find the solution of the following initial value problems:

21–13) y′ = 2, y(0) = 9.

21–14) y′ = x
√
x, y(1) = 1.

21–15) y′ = −2(x− 2)−3 + 12, y(3) = 37.

21–16) y′ = 24x2, y(0) = 4.

21–17) y′ = e−x, y(0) = 0.

21–18) y′ =
1

2
(1 + x)−1/2 + 1, y(3) = 5.

21–19) y′ =
5

(1− x)3/2
, y(0) = 15.

21–20) y′ =
1

x
, y(1) = 4.

21–21) y′ = −6e−2x − e−x, y(0) = 5.

21–22) y′ =
2x

1 + x2
, y(0) = 0.

21–23) y′ = −12

√
1 + y

x3
, y(1) = 8.

21–24) yy′ = 2e−y
2

, y(0) = 0.
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ANSWERS

21–1) y = x+ lnx+ c

21–2) y2 +
x2

2
= c

21–3) y = − 3

x3 + 3c

21–4) y = (6x2 + c)1/3

21–5) y =
1

lnx+ c

21–6) y = ln(x2 + c)

21–7) y =
√

2x+ e−4x + c

21–8) y = ln(2e3x + c)

21–9) 5y − y2 = x+ c

21–10) y = kx

21–11) y = kex
3/3

21–12) y = ke−x

21–13) y = 2x+ 9

21–14) y =
2

5
x5/2 +

3

5

21–15) y =
1

(x− 2)2
+ 12x

21–16) y = 8x3 + 4

21–17) y = 1− e−x

21–18) y =
√

1 + x+ x

21–19) y =
10√
1− x

+ 5

21–20) y = lnx+ 4

21–21) y = 3e−2x + e−x + 1

21–22) y = ln |1 + x2|

21–23) y =
9

x4
− 1

21–24) y =
√

ln(4x+ 1)
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Chapter 22

First Order Linear Differential Equations

A differential equation that can be written in the form

y′ + p(x)y = r(x)

is called a first order linear differential equation. Here y = y(x)

and p(x) and q(x) are functions of x. For example

y′ + x2y = e−x

y′ − y

x
= x4 + x

y′ + 5y = lnx

are first order linear differential equations. But the following are

NOT:

y′ + x3y = y2

yy′ − xy = x2 + 1

y′ + 5ey =
1

x

These equations are not in the form given in the definition.

Method of Solution:

To solve a first order linear differential equation:

� Find q(x) =

∫
p(x) dx.

� Multiply both sides of the equation by eq(x) = e
∫
p(x) dx.

Obtain:

eq(x)y′ + eq(x)p(x)y = eq(x)r(x)

� The left hand side can be written as the derivative of a

product:

[
eq(x)y

]′
= eq(x)r(x)

� Integrate both sides:

eq(x)y =

∫
eq(x)r(x)dx

Do not forget the integration constant.
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Example 22–1: Solve y′ +
2

x
y = 4x.

Solution: Here, p(x) =
2

x
and r(x) = 4x.∫

2

x
dx = 2 ln x

e2 lnx = elnx2

= x2

Multiply both sides by x2:

x2y′ + 2xy = 4x3

[
x2y
]′

= 4x3

x2y =

∫
4x3dx

x2y = x4 + c

y = x2 +
c

x2

Example 22–2: Solve the initial value problem:

y′ − y = e2x, y(0) = 5

Solution: Here, p(x) = −1 and r(x) = e2x.∫
−dx = −x

Multiply both sides by e−x:

e−xy′ − xe−xy = ex

[
e−xy

]′
= ex

e−xy =

∫
ex dx

e−xy = ex + c

y = e2x + cex

In this case, we have to find the integration constant

using the initial condition.

x = 0 ⇒ y = 5

5 = 1 + c ⇒ c = 4

y = e2x + 4ex
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EXERCISES

Find the solution of the following differential equations:

22–1) y′ − y = xex

22–2) y′ +
2

x
y =

e−x

x2

22–3) y′ − 2xy = 3x2ex
2

22–4) y′ − y

x
= 4x4

22–5) y′ +
y

2x
= 6

22–6) y′ + 2y =
5

xe2x

22–7) y′ +

(
1 +

1

x

)
y =

(
2

x
+ 6

)
e−x

22–8) y′ + y =
1

x2ex

22–9) y′ + 3x2y = 7e−x
3

22–10) y′ − y

2x
= 3x5/2

22–11) y′ − 2y = 15
√
x e2x

22–12) x3y′ + x2y = −1

Find the solution of the following initial value problems:

22–13) xy′ + 4y =
2

x4
, y(1) = 0.

22–14) y′ + 3y = 8ex, y(0) = 6.

22–15) xy′ − 2y = 2, y(2) = 7.

22–16) y′ + 4y = 12e−4x, y(0) = 2.

22–17) y′ − y

2x
=

1

x
, y(1) = 4.

22–18) x2y′ − 3xy = x4, y(5) = 0.

22–19) xy′ + 2y =
2

1 + x2
, y(1) = ln 6.

22–20) y′ − y

x
= 15x

(
3x+ 1)4, y

(
1

3

)
= 12.

22–21) y′ − 2y

x
= 4x lnx, y(1) = 8.

22–22) xy′ + 3y = 10x2, y(2) = 15.

22–23) y′ + y =
1

1 + ex
, y(0) = 0.

22–24) y′ +
y

x lnx
=

8

x lnx
, y(e) = 11.
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ANSWERS

22–1) y =

(
x2

2
+ c

)
ex

22–2) y =
c− e−x

x2

22–3) y =
(
x3 + c

)
ex

2

22–4) y = x5 + cx

22–5) y = 4x+
c√
x

22–6) y =
(
5 lnx+ c

)
e−2x

22–7) y =
( c
x

+ 2 + 3x
)
e−x

22–8) y =

(
c− 1

x

)
e−x

22–9) y =
(
7x+ c

)
e−x

3

22–10) y =
(
x3 + c

)√
x

22–11) y =
(
10x
√
x+ c

)
e2x

22–12) y =
1

x2
+
c

x

22–13) y =
2 lnx

x4

22–14) y = 2ex + 4e−3x

22–15) y = 2x2 − 1

22–16) y =
(
12x+ 2

)
e−4x

22–17) y = 6
√
x− 2

22–18) y = x3 ln
(x

5

)

22–19) y =
ln
(
3 + 3x2

)
x2

22–20) y = x
(
3x+ 1

)5
+ 4x

22–21) y = 2x2
(

ln2 x+ 4
)

22–22) y = 2x2 +
56

x3

22–23) y = e−x ln

(
1 + ex

2

)

22–24) y = 8 +
3

lnx



Chapter 23

Second Order Differential Equations

A differential equation that can be written in the form

y′′ + ay′ + by = 0

where a and b are constants, is called a second order linear ho-

mogeneous differential equation with constant coefficients. Some

examples are:

y′′ + 5y′ + 4y = 0

y′′ − 3

2
y′ +

1

2
y = 0

y′′ + 9y = 0

4y′′ − 9y′ + 5y = 0

The last equation is not exactly in the format given above, but we

can easily rewrite it as:

y′′ − 9

4
y′ +

5

4
y = 0

Method of Solution:

� Start with the assumption y = erx where r is a real number.

� Insert y = erx in the equation and obtain:

r2 + ar + b = 0

� Solve this quadratic equation.

� If there are two distinct roots r1 and r2, the solution is:

y = c1e
r1x + c2e

r2x

� If r is a double root

y = c1e
rx + c2xe

rx

Note that we do not consider complex roots in this course.

c1 and c2 are arbitrary constants, in other words, you can choose

them as you wish and still the function y will satisfy the given

differential equation.



158 CHAPTER 23 - Second Order Differential Equations

Example 23–1: Solve y′′ − 5y′ + 6y = 0.

Solution: Let’s start with the assumption y = erx. In that case:

y′ = rerx

y′′ = r2erx

Insert these in the equation to obtain:

r2erx − 5rerx + 6erx = 0

erx
(
r2 − 5r + 6

)
= 0

We know that erx 6= 0 so

r2 − 5r + 6 = 0

(r − 2)(r − 3) = 0

We find two roots: r = 2 or r = 3. There are two

solutions of the differential equation, e2x and e3x.

The equation is linear and homogeneous, so if we multiply

a solution by a constant, or add two solutions, the result

is again a solution.

Therefore the general solution is:

y = c1e
2x + c2e

3x

Example 23–2: Solve y′′ − 9y = 0.

Solution: Once again,

y = erx

y′ = rerx

y′′ = r2erx

Insert these in the equation to obtain:

r2erx − 9erx = 0

r2 − 9 = 0

(r − 3)(r − 3) = 0

We find two roots: r = −3 or r = 3. The general

solution is:

y = c1e
3x + c2e

−3x
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Example 23–3: Solve y′′ + 15y′ = 0.

Solution: Once again,

y = erx

y′ = rerx

y′′ = r2erx

Insert these in the equation to obtain:

r2erx + 15rerx = 0

r2 + 15r = 0

r(r + 15) = 0

We find two roots: r = 0 or r = −15. We know that

e0 = 1, this means one solution is a constant. The

general solution is:

y = c1 + c2e
−15x

Example 23–4: Solve y′′ − 4y′ + 4y = 0.

Solution:

y = erx

y′ = rerx

y′′ = r2erx

Insert these in the equation to obtain:

r2erx − 4rerx + 4erx = 0

r2 − 4r + 4 = 0

(r − 2)2 = 0

We find r = 2. This is a double root. The general

solution is:

y = c1e
2x + c2xe

2x
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Example 23–5: Solve the initial value problem

4y′′ − 8y′ + 3y = 0, y(0) = 4, y′(0) = 1

Solution: First, we will solve the equation and then we will deter-

mine the constants using the given initial conditions.

4r2erx − 8rerx + 3erx = 0

4r2 − 8r + 3 = 0

(2r − 1)(2r − 3) = 0

We find two roots: r =
1

2
and r =

3

2
. The general

solution is:

y = c1e
1
2
x + c2e

3
2
x

The derivative of y is:

y′ =
1

2
c1e

1
2
x +

3

2
c2e

3
2
x

y(0) = 4 means that when x = 0, y = 4. In other words

c1 + c2 = 4. Similarly:

y′(0) = 1 ⇒ 1

2
c1 +

3

2
c2 = 1 ⇒ c1 + 3c2 = 2.

The solution of the system

c1 + c2 = 4

c1 + 3c2 = 2

is c1 = 5, c2 = −1 therefore

y = 5e
1
2
x − e

3
2
x

Example 23–6: Solve the initial value problem

y′′ − 12y′ + 36y = 0, y(0) = 3, y′(0) = 13

Solution:

r2erx − 12rerx + 36erx = 0

r2 − 12r + 36 = 0

(r − 6)2 = 0

We find r = 6 . This is a double root. The general

solution is:

y = c1e
6x + c2xe

6x

The derivative of y is:

y′ = 6c1e
6x + c2e

6x + 6c2xe
6x

y(0) = 3 ⇒ c1 = 3.

y′(0) = 13 ⇒ 6c1 + c2 = 13.

The solution of this set of equations is c1 = 3, c2 = −5

therefore

y = 3e6x − 5xe6x
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EXERCISES

Find the general solution of the following differential equations:

23–1) y′′ − 8y′ + 15y = 0

23–2) y′′ − 9y′ + 8y = 0

23–3) y′′ − 2y′ − 8y = 0

23–4) y′′ − 9y = 0

23–5) y′′ − 64y = 0

23–6) y′′ − 6y′ = 0

23–7) y′′ + 11y′ = 0

23–8) y′′ − y′ + 3

16
y = 0

23–9) 25y′′ − 50y′ + 16y = 0

23–10) y′′ − 8y′ + 16y = 0

23–11) y′′ + 18y′ + 81y = 0

23–12) 9y′′ − 12y′ + 4y = 0

Find the solution of the following initial value problems:

23–13) y′′ − 7y′ + 10y = 0, y(0) = 7, y′(0) = 26.

23–14) y′′ + 2y′ + y = 0, y(0) = 1, y′(0) = −4.

23–15) y′′ − y′ = 0, y(0) = 2, y′(0) = 1.

23–16) 49y′′ − 4y = 0, y(0) = −7, y′(0) = 2.

23–17) 16y′′ − 48y′ + 35y = 0, y(0) = 12, y′(0) = 19.

23–18) 4y′′ − 20y′ + 25y = 0, y(0) = 0, y′(0) = 11.

23–19) y′′ + 3y′ − 4y = 0, y(0) = −6, y′(0) = 29.

23–20) y′′ − 16y = 0, y(0) = 15, y′(0) = 12.

23–21) y′′ − 20y′ + 100y = 0, y(0) = 0, y′(0) = 4.

23–22) y′′ − 14y′ + 24y = 0, y(0) = 3, y′(0) = 36.

23–23) 25y′′ − 10y′ + y = 0, y(0) = 5, y′(0) = −14.

23–24) y′′ − 8y′ = 0, y(0) = 1, y′(0) = 8.



162 CHAPTER 23 - Second Order Differential Equations

ANSWERS

23–1) y = c1e
3x + c2e

5x

23–2) y = c1e
x + c2e

8x

23–3) y = c1e
−2x + c2e

4x

23–4) y = c1e
3x + c2e

−3x

23–5) y = c1e
8x + c2e

−8x

23–6) y = c1 + c2e
6x

23–7) y = c1 + c2e
−11x

23–8) y = c1e
1
4
x + c2e

3
4
x

23–9) y = c1e
2
5
x + c2e

8
5
x

23–10) y = c1e
4x + c2xe

4x

23–11) y = c1e
−9x + c2xe

−9x

23–12) y = c1e
2
3
x + c2xe

2
3
x

23–13) y = 3e2x + 4e5x

23–14) y = e−x − 3xe−x

23–15) y = 1 + ex

23–16) y = −7e−
2
7
x

23–17) y = 8e
7
4
x + 4e

5
4
x

23–18) y = 11xe
5
2
x

23–19) y = ex − 7e−4x

23–20) y = 9e4x + 6e−4x

23–21) y = 4xe10x

23–22) y = 3e12x

23–23) y = 5e
1
5
x − 15xe

1
5
x

23–24) y = e8x



Chapter 24

Sequences and Difference Equations

A sequence is an ordered list of numbers with infinitely many terms.

For example {
1, 3, 5, 7, 9, . . .

}
is an arithmetic sequence. We can also express this using the

general term:{
an = 2n− 1

}∞
n=1

or an = 2n− 1, n = 1, 2, 3, . . .

Here, an denote terms of the series. Another example is:{
1, 2, 4, 8, 16, . . .

}
This is a geometric sequence.{

an = 2n
}∞
n=0

or an = 2n, n = 0, 1, 2, . . .

There are many different types of sequences{
1,

1

2
,
1

3
,
1

4
, . . .

}

an =
1

n
, n = 1, 2, 3, . . .

Example 24–1: Find the general term of the following sequences:

a)
{

1,−1, 1,−1, 1, . . .
}

b)
{

5, 10, 15, 20, 25, . . .
}

c)
{

8, 13, 18, 23, 28, . . .
}

d)
{

1,−2, 4,−8, 16, . . .
}

e)

{
1

4
,

1

9
,

1

16
,

1

25
, . . .

}

Solution:

a) an = (−1)n, n = 0, 1, 2, . . .

b) an = 5n, n = 1, 2, 3, . . .

c) an = 5n+ 3, n = 1, 2, 3, . . .

d) an = (−2)n, n = 0, 1, 2, . . .

e) an =
1

n2
, n = 2, 3, 4, . . .
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Arithmetic Sequences: An arithmetic sequence is a sequence

where the difference between the terms is fixed, for example:

1, 2, 3, 4, . . .

20, 25, 30, 35, . . .

74, 174, 274, 374, . . .

are arithmetic sequences. The general form is:

a1, a1 + d, a1 + 2d, a1 + 3d, . . .

where a1 is the first term and d denotes the difference. The nth

term is:

an = a1 + (n− 1)d

We can find the sum of the first n positive integer using the

following trick:

S = 1 + 2 + 3 + 4 + · · ·+ n

S = n+ (n− 1) + (n− 2) + (n− 3) + · · ·+ 1

Add them side by side to obtain:

2S = (n+ 1) + (n+ 1) + (n+ 1) + (n+ 1) + · · ·+ (n+ 1)

2S = n(n+ 1) ⇒ S =
n(n+ 1)

2

The same trick for a general arithmetic sequence gives:

2S = (a1 + an) + (a1 + an) + · · ·+ (a1 + an)

2S = n((a1 + an)) ⇒ S =
a1 + an

2
n

In other words, total is equal to the average term times the number

of terms.

Example 24–2: An arithmetic sequence is given by an = 12 + 5n.

Find a1, a2 and a100.

Solution: The difference is 5. Let’s rewrite the equation as:

an = 17 + 5(n− 1)

a1 = 17

a2 = 22

a100 = 512

Example 24–3: Consider the arithmetic sequence 4, 12, 20, . . ..

If an = 604, what is n?

Solution: The difference is 8. Let’s write the general term as:

an = 4 + 8(n− 1)

604 = 4 + 8(n− 1) ⇒ 604 = 8n− 4

n =
608

8
= 76

Example 24–4: Find the sum of 7 + 10 + 13 + 16 + · · ·+ 73.

Solution: The difference is 3. Let’s write the general term as:

an = 7 + 3(n− 1)

73 = 7 + 3(n− 1) ⇒ n = 23

Therefore the sum is:

S =
7 + 73

2
· 23 = 1120
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Difference Equations: A linear first order difference equation

with constant coefficients is:

xn+1 = axn + b, n = 0, 1, 2, . . .

Here, a and b are constants. If b = 0, we obtain the homogeneous

equation

xn+1 = axn, n = 0, 1, 2, . . .

The homogeneous equations are easy:

x1 = ax0
x2 = ax1 = a2x0
x3 = ax2 = a3x0
x4 = ax3 = a4x0

...

xn = axn−1 = anx0

In other words,

xn+1 = axn ⇒ xn = anx0

Let’s try to solve the nonhomogeneous equation xn+1 = axn + b

in the same way:

x1 = ax0 + b

x2 = ax1 + b = a2x0 + ab+ b

x3 = ax2 + b = a3x0 + a2b+ ab+ b
...

xn = anx0 + an−1b+ · · ·+ a2b+ ab+ b

xn+1 = axn+b ⇒ xn = anx0+b
(
1+a+a2+a3+· · ·+an−1

)

Consider the following identities:(
1− a

)(
1 + a

)
=

(
1− a2

)(
1− a

)(
1 + a+ a2

)
=

(
1− a3

)(
1− a

)(
1 + a+ a2 + a3

)
=

(
1− a4

)
...

We can see that for the general case, the formula is:(
1− a

)(
1 + a+ a2 + a3 + · · ·+ an−1

)
=
(
1− an

)
We can easily show this by multiplying the expressions on the left

and simplifying. If we rearrange this formula, we obtain:

1 + a+ a2 + a3 + · · ·+ an−1 =
1− an

1− a
=
an − 1

a− 1
, a 6= 1

If a = 1 we obtain:

1 + a+ a2 + a3 + · · ·+ an−1 = n

Now, we can express the solution of the nonhomogeneous difference

equation

xn+1 = axn + b, n = 0, 1, 2, . . .

as follows:

� If a 6= 1:

xn = anx0 + b
an − 1

a− 1

� If a = 1:

xn = x0 + nb
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Example 24–5: Find the solution of the difference equation:

xn+1 = 2xn + 5, x0 = 6.

Solution: If we find the first few terms, we see that:

x1 = 2x0 + 5

x2 = 2x1 + 5 = 22x0 + 2 · 5 + 5

x3 = 2x2 + 5 = 23x0 + 22 · 5 + 2 · 5 + 5

...

xn = 2n · 6 + 2n−1 · 5 + · · ·+ 22 · 5 + 2 · 5 + 5

xn = 2n · 6 + 5 · 2n − 1

2− 1

Alternatively, we can directly see that here a = 2, b = 5

and x0 = 6 so using the formula we obtain:

xn = 2n · 6 + 5 · 2n − 1

2− 1

= 2n · 6 + 5 ·
(
2n − 1

)
= 11 · 2n − 5

Example 24–6: Find the solution of the difference equation:

xn+1 = 4xn − 13, x0 = 7.

Solution: a = 5, b = −13 and x0 = 7 so using the formula:

xn = 4n · 7− 13 · 4n − 1

4− 1

= 4n · 7− 13

3
·
(
4n − 1

)
=

8

3
· 4n +

13

3

=
2 · 4n+1 + 13

3

Example 24–7: Find the solution of the difference equation:

xn+1 = xn + 8, x0 = 33.

Solution: Here a = 1, so we have to use the second formula:

xn = 33 + 8n

Actually, we can solve this easily without any formulas:

x1 = 33 + 8

x2 = x1 + 8 = 33 + 2 · 8

x3 = x2 + 8 = 33 + 3 · 8
...

xn = xn−1 + 8 = 33 + n · 8
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Second Order Difference Equations: A second order linear

homogeneous difference equation with constant coefficients is:

xn+2 + axn+1 + xn = 0, n = 0, 1, 2, . . .

where a and b are constants. We can try a solution of the form

xn = rn. Then, we obtain:

rn+2 + arn+1 + brn = 0

r2 + ar + b = 0

Note that, for this type of equation:

� A multiple of a solution is also a solution.

� Sum of two solutions is also a solution.

If there are two distinct roots r1 and r2, the general solution is:

xn = c1r
n
1 + c2r

n
2

If there is a double root r, the general solution is:

xn = c1r
n + c2nr

n

(We do not consider complex roots in this course.)

If two initial conditions are given, we can determine c1 and c2. This

method is very similar to the one we used for second order linear

homogeneous differential equations.

Example 24–8: Find the solution of the difference equation:

xn+2 − 7xn+1 + 12xn = 0, x0 = 4, x1 = 7.

Solution: Let’s insert xn = rn in the equation:

rn+2 − 7rn+1 + 12rn = 0

r2 − 7r + 12r = 0

(r − 3)(r − 4) = 0

r = 3 or r = 4. We have two distinct roots.

xn = c13
n + c24

n

x0 = 4 ⇒ c1 + c2 = 4

x1 = 7 ⇒ 3c1 + 4c2 = 7

We have to solve this system of two equations in two

unknowns.

3c1 + 3c2 = 12

3c1 + 4c2 = 7

Subtracting these, we obtain −c2 = 5, c2 = −5 and

c1 = 4− c2 = 9. Therefore the solution of the difference

equation is:

xn = 9 · 3n − 5 · 4n
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Example 24–9: Find the solution of the difference equation:

xn+2 − 12xn+1 + 36xn = 0, x0 = 5, x1 = 18.

Solution: Let’s insert xn = rn in the equation:

rn+2 − 12rn+1 + 36rn = 0

r2 − 12r + 36 = 0

(r − 6)2 = 0

r = 6 is a double root.

xn = c16
n + c2n6n

x0 = 5 ⇒ c1 = 5

x1 = 18 ⇒ 6c1 + 6c2 = 18 ⇒ c1 + c2 = 3

c1 = 5 ⇒ c2 = 3− 5 = −2

The solution of the difference equation is:

xn = 5 · 6n − 2n · 6n

xn =
(
5− 2n

)
6n

Example 24–10: Find the solution of the difference equation:

4xn+2 − 16xn+1 + 7xn = 0, x0 = 14, x1 = 49.

Solution: Let’s insert xn = rn in the equation:

4rn+2 − 16rn+1 + 7rn = 0

4r2 − 16r + 7r = 0

(2r − 1)(2r − 7) = 0

r =
1

2
or r =

7

2
. We have two distinct roots.

xn = c1

(
1

2

)n

+ c2

(
7

2

)n

x0 = 14 ⇒ c1 + c2 = 14

x1 = 49 ⇒ c1
2

+
7c2
2

= 49

Multiply the second equation by 2:

c1 + 7c2 = 98

c1 + c2 = 14

Subtracting these, we obtain 6c2 = 84 ⇒ c2 = 14.

Inserting this in the equation c1 + c2 = 14, we see that

c1 = 0.

Therefore the solution is xn = 14

(
7

2

)n

, or equivalently:

xn =
7n+1

2n−1
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EXERCISES

Find the solution of the following first order difference equations:

24–1) xn+1 = 8xn, x0 = 1.

24–2) xn+1 = −2xn, x0 = 17.

24–3) xn+1 =
3

4
xn, x0 = 3.

24–4) xn+1 = 4xn + 9, x0 = 7.

24–5) xn+1 = 2xn − 6, x0 = 6.

24–6) xn+1 = 5xn + 1, x0 = 11.

24–7) xn+1 = xn + 1, x0 = 5.

24–8) xn+1 = xn + 9, x0 = 8.

24–9) xn+1 =
1

2
xn +

3

2
, x0 = 7.

24–10) xn+1 =
3

5
xn + 24, x0 = 90.

24–11) xn+1 = xn +
1

5
, x0 = 0.

24–12) xn+1 = −3xn + 36, x0 = 10.

Find the solution of the following second order difference equations:

24–13) xn+2 − 5xn+1 + 4xn = 0.

24–14) xn+2 + 7xn+1 − 18xn = 0.

24–15) xn+2 − 25xn = 0.

24–16) xn+2 − 6xn+1 + 9xn = 0.

24–17) xn+2 − 10xn+1 + 21xn = 0, x0 = 4, x1 = 8.

24–18) xn+2 − 6xn+1 + 8xn = 0, x0 = 9, x1 = 14.

24–19) xn+2 + 8xn+1 + 16xn = 0, x0 = 1, x1 = −12.

24–20) xn+2 − 20xn+1 + 100xn = 0, x0 = 0, x1 = 100.

24–21) 6xn+2 − 5xn+1 + xn = 0, x0 = 12, x1 = 6.

24–22) xn+2 − 4xn+1 + 4xn = 0, x0 = 8, x1 = 16.

24–23) 16xn+2 − 16xn+1 + 3xn = 0, x0 = 0, x1 =
1

2
.

24–24) 25xn+2 − 20xn+1 + 4xn = 0, x0 = 13, x1 = 2.
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ANSWERS

24–1) xn = 8n

24–2) xn = 17 · (−2)n

24–3) xn =
3n+1

4n

24–4) xn = 10 · 4n − 3

24–5) xn = 6

24–6) xn =
9

4
· 5n+1 − 1

4

24–7) xn = 5 + n

24–8) xn = 8 + 9n

24–9) xn =
1

2n−2 + 3

24–10) xn = 30

(
3

5

)n

+ 60

24–11) xn =
n

5

24–12) xn = (−3)n + 9

24–13) xn = c1 + c24
n

24–14) xn = c12
n + c2(−9)n

24–15) xn = c15
n + c2(−5)n

24–16) xn = c13
n + c2n3n

24–17) xn = 5 · 3n − 7n

24–18) xn = −2 · 4n + 11 · 2n

24–19) xn = (−4)n
(
1 + 2n

)
24–20) xn = n10n+1

24–21) xn =
12

2n

24–22) xn = 2n+3

24–23) xn =
3n − 1

4n

24–24) xn =

(
2

5

)n (
13− 8n

)



Chapter 25

Geometric Series

An infinite series is an infinite sum of the form

∞∑
n=1

an = a1 + a2 + a3 + · · ·

For example,

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·

Although we are adding an infinite number of positive terms, the

sum can be finite. For example, consider the series

∞∑
n=0

(
1

10

)n

= 1 + 0.1 + 0.01 + 0.001 + · · ·

The sum is:

1.111111 . . . = 1.1̄ =
10

9

Partial Sum: nth partial sum of a series is the sum of its first n

terms:

Sn =
n∑

k=1

ak

We say that the infinite series
∞∑
n=1

an converges with sum S if the

limit

S = lim
n→∞

Sn

exists and is finite. Otherwise we say the series diverges.

We can add two convergent series, or multiply a convergent series

by a constant to obtain another series which is also convergent.

Similarly, adding or deleting a finite number of terms does not

change convergence. For example, the series

∞∑
n=0

an and
∞∑
n=5

an

are either both convergent or both divergent.
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Geometric Series: The series

∞∑
n=0

rn

is called a geometric series. Its partial sum is:

Sn = 1 + r + r2 + r3 + · · ·+ rn

We can find Sn using the following trick:

rSn = r + r2 + r3 + r4 + · · ·+ rn+1

Sn − rSn = (1 + r + · · ·+ rn)− (r + r2 + · · ·+ rn+1)

= 1− rn+1

In other words:

Sn =
1− rn+1

1− r
What happens as n→∞ ? Is the series convergent?

Clearly, the geometric series is convergent if |r| < 1 and its sum is:

S = lim
n→∞

Sn =
∞∑
n=0

rn =
1

1− r

For example,
∞∑
n=0

1

2n

is a convergent series and its sum is:

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1

1− 1
2

= 2

If |r| > 1 then the geometric series is divergent. For example

∞∑
n=0

2n = 1 + 2 + 4 + 8 + · · ·

is a divergent series.

Example 25–1: Find the sum of the geometric series

∞∑
n=0

1

3n
= 1 +

1

3
+

1

9
+ · · ·

Solution: Here r =
1

3
. The series is convergent because

1

3
< 1.

∞∑
n=0

1

3n
=

1

1− 1
3

=
3

2

Example 25–2: Find the sum of the geometric series

1− 3

4
+

9

16
− 27

64
+ · · ·

Solution: Here r = − 3

4
⇒ |r| < 1 therefore the series

is convergent.

∞∑
n=0

(
− 3

4

)n

=
1

1−
(
−3

4

) =
1
7
4

=
4

7
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Example 25–3: Find the sum of the geometric series

1

5
+

1

25
+

1

125
+ · · ·

Solution: Here r =
1

5
. The series is convergent because∣∣∣∣15

∣∣∣∣ < 1

But we have to be careful, the series is not in standard

form. Therefore the answer is NOT
1

1− 1
5

.

∞∑
n=1

1

5n
=

1

1− 1
5

− 1

=
5

4
− 1

=
1

4

An alternative method is:

1

5
+

1

25
+

1

125
+ · · · =

1

5

(
1 +

1

5
+

1

25
+ · · ·

)

=
1

5
· 1

1− 1
5

=
1

5
· 5

4

=
1

4

Example 25–4: Find the sum of the series

∞∑
n=2

2n−1

32n

if it is convergent.

Solution: Here r =
2

32
=

2

9
therefore the series is convergent.

∞∑
n=2

2n−1

32n
=

∞∑
n=2

2n−1

9n

=
∞∑
n=0

2n+1

9n+2

=
2

92

∞∑
n=0

(
2

9

)n

=
2

81
· 1

1− 2
9

=
2

81
· 9

7

=
2

63
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Example 25–5: Is the series
∞∑
n=0

en convergent?

Solution: This is a geometric series with r = e = 2.717 . . ..

r > 1 therefore the series is divergent.

Example 25–6: Is the series
∞∑
n=0

e−n convergent?

Solution: This is a geometric series with r = e−1 =
1

e
.

r < 1 therefore the series is convergent.

Its sum is:
1

1− 1
e

=
e

e− 1

Example 25–7: Is the series

5

2
− 25

4
+

125

8
− · · ·

convergent?

Solution: This is a geometric series with r = − 5

2
.

|r| > 1 therefore the series is divergent.

Example 25–8: Find the sum of the series

1

7
− 6

72
+

62

73
− 63

74
+ · · ·

(if it is convergent)

Solution: This is a geometric series with r = − 6

7
.

|r| < 1 therefore the series is convergent.

1

7
− 6

72
+

62

73
− 63

74
+ · · · =

1

7

(
1− 6

7
+

62

72
− 63

72
+ · · ·

)

=
1

7

∞∑
n=0

(−1)n
6n

7n

=
1

7

∞∑
n=0

(
− 6

7

)n

=
1

7
· 1

1−
(
−6

7

)
=

1

7
· 1

13
7

=
1

7
· 7

13

=
1

13
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EXERCISES

Find the sum of the given series if it is convergent:

25–1)
∞∑
n=0

(
2

3

)n

25–2)
∞∑
n=0

(
7

3

)n

25–3)
∞∑
n=0

(
− 4

5

)n

25–4)
∞∑
n=0

12

3n+1

25–5)
∞∑
n=0

(−1)n

4n

25–6)
∞∑
n=0

(e− 1)n

25–7) 1 + 0.6 + 0.36 + 0.216 + 0.1296 + · · ·

25–8)
∞∑
n=0

e
n
2

25–9)
∞∑
n=0

e−
n
2

25–10)
3

5
+

3

25
+

3

125
+

3

625
+ · · ·

Find the sum of the given series if it is convergent:

25–11)
∞∑
n=1

4n+1

5n

25–12)
∞∑
n=1

(−2)n

12n−1

25–13)
∞∑
n=1

52n−1

33n+2

25–14)
∞∑
n=1

33n−1

42n+1

25–15)
∞∑
n=2

22n+1

5n−1

25–16)
∞∑
n=2

(−8)n

23n+1

25–17)
∞∑
n=2

(−3)2n−1

10n−2

25–18) 4 + 6 + 9 +
27

2
+

81

4
+ · · ·

25–19)
12

5
+

24

25
+

48

125
+

96

625
+ · · ·

25–20) 2 · 9 + 2 · 92

11
+ 2 · 93

112
+ 2 · 94

113
+ · · ·
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ANSWERS

25–1) 3

25–2) Divergent

25–3)
5

9

25–4) 6

25–5)
4

5

25–6) Divergent

25–7) 2.5

25–8) Divergent

25–9)

√
e√

e− 1

25–10)
3

4

25–11) 16

25–12)
24

7

25–13)
5

18

25–14) Divergent

25–15) 32

25–16) Divergent

25–17) −270

25–18) Divergent

25–19) 4

25–20) 99



Chapter 26

Matrices and Basic Operations

An n×m matrix is a rectangular array of numbers.
a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

...

an1 an2 · · · anm


This matrix has n rows and m columns. The numbers aij are

called entries.

If m = n, it is called a square matrix, for example

A =

 1 3 5

0 2 4

9 8 7


is a square matrix. The main diagonal entries of a square matrix

are the entries a11, a22, . . . , ann.

A =

 1 3 5

0 2 4

9 8 7



A diagonal matrix is a square matrix where all the entries that

are not on the main diagonal are zero, for example

B =

 3 0 0

0 2 0

0 0 7


An upper triangular matrix is a square matrix where all elements

below diagonal are zero, and a lower triangular matrix is a square

matrix where all elements above diagonal are zero, for example:

C =


6 4 2 11

0 2 18 20

0 0 9 4

0 0 0 2

 , D =


3 0 0 0

15 7 0 0

6 33 8 0

−5 13 40 1


The transpose of a matrix A is AT , obtained by interchanging

rows and columns, for example:

E =

 3 5 7

10 2 4

−8 0 9

 and F =

 3 10 −8

5 2 0

7 4 9


are transposes of each other. F = ET and E = F T
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If A = AT , we call it a symmetric matrix, for example:

A =

 1 2 9

2 4 7

9 7 5


We can add and subtract matrices by adding or subtracting their

corresponding entries, for example:[
1 0 −2

2 8 22

]
+

[
12 −3 5

9 1 11

]
=

[
13 −3 3

11 9 33

]
If matrix dimensions are different, we can not add or subtract them,

for example:

[
7 3 2

1 0 1

]
+

 2 6 9

1 2 3

5 4 0

 = ??

is undefined.

If A is a matrix and c is a scalar (a number), then B = cA is the

scalar multiplication of c and A.

bij = c aij

In other words, we multiply each entry. For example:

7

 1 2 3

0 20 −1

4 5 11

 =

 7 14 21

0 140 −7

28 35 77



Example 26–1: Let

A =

[
1 4

0 5

]
B =

[
−3 2

11 9

]

C =

[
1 3 5

2 4 6

]
D =

 8 3

4 1

2 0


Calculate the following if possible:

a) 3A+B

b) A−BT

c) A+ C

d) C −D

e) 2C +DT

Solution: a) 3A+B =

[
0 14

11 24

]
b) A−BT =

[
4 −7

−2 −4

]
c) A+ C is undefined, dimensions are different.

d) C −D is undefined, dimensions are different.

e) 2C +DT =

[
10 10 12

7 9 12

]
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Matrix Multiplication: If A is an n× k matrix and B is a k×m
matrix, then C = AB is an n×m matrix. The entries of C are

calculated using:

cij =
k∑

p=1

aipbpj = ai1b1j + ai2b2j + · · ·+ aikbkj

For example [
3 4 8

1 7 5

] [
5 2

10 7

]
is impossible, because number of columns of the first matrix and

the number of rows of the second matrix are not equal.

AB =

[
3 4 8

1 7 5

] 5 2 7 14

10 8 21 1

0 −3 6 9

 =

[
c11 c12 c13 c14
c21 c22 c23 c24

]

This is possible because A has three columns and B has 3 rows.

Some of the entries are:

c11 = 3 · 5 + 4 · 10 + 8 · 0 = 55

c12 = 3 · 2 + 4 · 8 + 8 · −3 = 14

c21 = 1 · 5 + 7 · 10 + 5 · 0 = 75

etc. To find cij, multiply the ith row of A with jth column of B.

For example, to find c13:

[
• • •
• • •

] • • • •
• • • •
• • • •

 =

[
• • • •
• • • •

]

Example 26–2: Let A =

[
1 7

8 2

]
, B =

[
3 5

9 0

]
,

C =

[
1 6 5

0 4 2

]
, D =

[
7 −2 3

−1 2 4

]
.

Find the following matrix products (if possible).

a) AB

b) BA

c) CD

d) CDT

e) CTD

f) DB

Solution: a)

[
1 7

8 2

] [
3 5

9 0

]
=

[
66 5

42 40

]
b)

[
3 5

9 0

] [
1 7

8 2

]
=

[
43 31

9 63

]
c) Undefined

d)

[
1 6 5

0 4 2

] 7 −1

−2 2

3 4

 =

[
10 31

−2 16

]

e)

 1 0

6 4

5 2

[ 7 −2 3

−1 2 4

]
=

 7 −2 3

38 −4 34

33 −6 23


f) Undefined
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Matrix product is associative:

A
(
BC
)

=
(
AB
)
C

For example, consider the product[
1 2

0 4

] [
3 −1

7 0

] [
5 6

−4 4

]
We can find the result in two different ways:[

1 2

0 4

]([
3 −1

7 0

] [
5 6

−4 4

])
=

[
1 2

0 4

] [
19 14

35 42

]
=

[
89 98

140 168

]

([
1 2

0 4

] [
3 −1

7 0

])[
5 6

−4 4

]
=

[
17 −1

28 0

] [
5 6

−4 4

]
=

[
89 98

140 168

]
The results are the same.

But matrix product is not commutative:

AB 6= BA (In general)

The transpose of the product is product of transposes in reverse

order: (
AB
)T

= BTAT

An identity matrix is a diagonal matrix whose all nonzero entries

are 1. We denote identity matrices by In or simply I.

I2 =

[
1 0

0 1

]
, I3 =

 1 0 0

0 1 0

0 0 1


The product of an identity matrix with any other matrix A gives

the result A. (when the product is defined.) For example:[
1 0

0 1

] [
18 6 9

5 7 11

]
=

[
18 6 9

5 7 11

]
[

18 6 9

5 7 11

] 1 0 0

0 1 0

0 0 1

 =

[
18 6 9

5 7 11

]
For a square matrix A, we have:

� An = AA · · ·A (n times)

� AnAm = An+m

�

(
An
)m

= Anm

� A0 = I

The powers of a diagonal matrix are especially easy to calculate,

for example:  3 0 0

0 2 0

0 0 −1

8

=

 38 0 0

0 28 0

0 0 1
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EXERCISES

The matrices A,B,C,D are defined as:

A =

 1 2 0

−1 3 2

4 5 −7

 , B =

 8 1 0

3 0 1

0 2 4

 ,

C =

[
2 1 −5

−1 −2 0

]
, D =

 4 1

0 6

3 0

.

Perform the following operations if possible:

26–1) A+ 4B

26–2) AB

26–3) CD

26–4) DC

26–5) C +D

26–6) ADC

26–7) DAC

26–8) 2BA− 5DC

26–9) CB − AD

26–10) AD −BD

26–11) A+BT

26–12)
(
A+B

)T

26–13)
(
AT − 2B

)T

26–14) CT +D

26–15) DT − 2CT

26–16) B2 − 2B − I
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Let A =

[
2 −1

5 7

]
,

B =

[
3 4 0

8 5 7

]
,

C =

 −2 9 1

4 6 −5

3 2 0

,

D =

 6 2

0 −2

5 1

.

Calculate the following if possible:

26–17) ABT

26–18) BC

26–19) DC

26–20)
(
BD

)T

26–21) DB

26–22) CD

Evaluate the following matrix products if they are defined:

26–23)

[
1 3

4 9

] [
10 7 9

0 1 4

]

26–24)

[
10 7 9

0 1 4

] [
1 3

4 9

]

26–25)

[
2 0 3 −1

8 5 0 4

]
7 0

2 2

6 5

9 −2



26–26)


7 0

2 2

6 5

9 −2


[

2 0 3 −1

8 5 0 4

]

26–27)

[
4 −3 8

9 0 3

] 1 5 7

2 4 12

0 8 0



26–28)

 9 5 1

4 0 8

7 2 11

 3 0 −3

6 8 1

−4 2 −1



26–29)

 3 0 −3

6 8 1

−4 2 −1

 9 5 1

4 0 8

7 2 11



26–30)

[
2 −1

−1 4

] [
8 10 12 16

2 3 5 3

]
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ANSWERS

26–1)

 33 6 0

11 3 6

4 13 9



26–2)

 14 1 2

1 3 11

47 −10 −23



26–3)

[
−7 8

−4 −13

]

26–4)

 7 2 −20

−6 −12 0

6 3 −15



26–5) Undefined

26–6)

 −5 −22 −20

−13 −32 −10

−44 −73 25



26–7) Undefined

26–8)

 −21 28 104

44 82 −14

−2 37 27



26–9) Undefined

26–10)

 −28 −1

−13 14

−17 22



26–11)

 9 5 0

0 3 4

4 6 −3



26–12)

 9 2 4

3 3 7

0 3 −3



26–13)

 −15 −4 0

−3 3 −2

4 3 −15



26–14)

 6 0

1 4

−2 0



26–15) Undefined

26–16)

 50 6 1

18 4 2

6 4 9
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26–17) Undefined

26–18)

[
10 51 −17

25 116 −17

]

26–19) Undefined

26–20)

[
18 83

−2 13

]

26–21)

 34 34 14

−16 −10 −14

23 25 7



26–22)

 −7 −21

−1 −9

18 2



26–23)

[
10 10 21

40 37 72

]

26–24) Undefined.

26–25)

[
23 17

102 2

]

26–26)


14 0 21 −7

20 10 6 6

52 25 18 14

2 −10 27 −17



26–27)

[
−2 72 −8

9 69 63

]

26–28)

 53 42 −23

−20 16 −20

−11 38 −30



26–29)

 6 9 −30

93 32 81

−35 −22 1



26–30)

[
14 17 19 29

0 2 8 −4

]
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Row Reduction

Row-Echelon Form:

A matrix that satisfies the following conditions is in row-echelon

form:

� If there are rows consisting of zeros only, they are at the

bottom.

� The first nonzero item (from left to right) of each row is 1.

It is called a leading 1.

� Each leading 1 is to the right of the other leading 1’s above

it.

If a matrix is in row-echelon form, we can solve the system of

equations represented by that matrix easily.

Some examples of matrices in row-echelon form (REF) are: 1 2 3

0 1 4

0 0 1

 ,
 1 −5 10 −1

0 1 9 7

0 0 0 1




1 5 9

0 0 1

0 0 0

0 0 0

 ,


1 6 12 4

0 1 3 5

0 0 1 8

0 0 0 0

 ,


1 23 0 −8

0 1 12 7

0 0 1 9

0 0 0 1



The following matrices are NOT in REF:
1 5 11 8

0 2 3 4

0 0 1 7

0 0 0 0

 ,


1 44 0 16

0 1 21 9

0 0 0 1

0 0 1 5




1 4 8

0 0 0

0 0 1

0 0 0

 ,


1 −3 2 6 12

0 1 48 17 21

0 0 1 5 8

0 0 1 33 −7
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Elementary Row Operations:

There are three types of elementary row operations. We can:

� Interchange two rows,

� Multiply a row by a nonzero constant,

� Add a multiple of a row to another row.

If we do these operations on a matrix, we obtain a row-equivalent

matrix.

Note that these operations are similar to operations on linear sys-

tems of equations, in the sense that they do not change the solution

set.

We can reduce matrices to REF using elementary row operations

in a systematic way.

It is possible to use different steps to reduce a matrix. For example,

if you have a 4 at the top left and 1 below it, you can multiply row

1 by 1
4

or you can interchange row 1 and row 2.

Example 27–1: Find a REF matrix that is row equivalent to 0 1 4

2 4 −6

3 8 0


Solution: Interchange the first two rows:

R1 ←→ R2 =⇒

 2 4 −6

0 1 4

3 8 0


Divide row 1 by two:

R1 →
1

2
R1 =⇒

 1 2 −3

0 1 4

3 8 0


Multiply row 1 by three and subtract from row 3:

R3 → R3 − 3R1 =⇒

 1 2 −3

0 1 4

0 2 9


Multiply row 2 by two and subtract from row 3:

R3 → R3 − 2R2 =⇒

 1 2 −3

0 1 4

0 0 1
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Reduced Row-Echelon Form:

Consider a matrix that is in row-echelon form. If it satisfies the

further condition

� If there’s a leading 1 in a column, all other entries in that

column are zero.

we say that matrix is in reduced row-echelon form (RREF).

An identity matrix is a typical RREF matrix:

 1 0 0

0 1 0

0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Some other examples are: 1 0 12

0 1 24

0 0 0

 ,
 1 0 3 0

0 1 7 0

0 0 0 1

 ,
 1 0 3 4

0 1 8 9

0 0 0 0




1 15 0 0 23 36

0 0 1 0 40 7

0 0 0 1 54 −5

0 0 0 0 0 0



Example 27–2: Using elementary row operations, reduce the

following matrix to RREF: 2 −6 −2 8

−2 11 7 12

−3 10 5 −1



Solution: R1 →
1

2
R1

 1 −3 −1 4

−2 11 7 12

−3 10 5 −1



R2 → R2 + 2R1

R3 → R3 + 3R1

 1 −3 −1 4

0 5 5 20

0 1 2 11



R2 →
1

5
R2

 1 −3 −1 4

0 1 1 4

0 1 2 11



R3 → R3 −R2

 1 −3 −1 4

0 1 1 4

0 0 1 7


This is REF.

R2 → R2 −R3

R1 → R1 +R3

 1 −3 0 11

0 1 0 −3

0 0 1 7



R1 → R1 + 3R2

 1 0 0 2

0 1 0 −3

0 0 1 7


This is RREF.
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Method of Reduction:

� A leading 1 in first in position a11 if possible. If not, next

right position ( a12).

� All entries below the leading 1 must be zero.

� Similarly, a leading 1 in second row in position a22 if possible.

If not, next right position ( a23).

� All entries below the leading 1 must be zero.

� · · ·

At the end of this, we obtain a REF matrix.

If we want a RREF matrix, we should continue as follows:

� All entries above the lowest (rightmost) leading 1 must be

zero.

� All entries above the next leading 1 must be zero.

� · · ·

We can illustrate this procedure on a sample 4×4 matrix as follows:


• • • •
• • • •
• • • •
• • • •

→


1 • • •
• • • •
• • • •
• • • •

→


1 • • •
0 • • •
0 • • •
0 • • •




1 • • •
0 1 • •
0 • • •
0 • • •

→


1 • • •
0 1 • •
0 0 • •
0 0 • •

→


1 • • •
0 1 • •
0 0 1 •
0 0 • •




1 • • •
0 1 • •
0 0 1 •
0 0 0 •

→


1 • • •
0 1 • •
0 0 1 •
0 0 0 1



The matrix we obtained at the end of this procedure is in REF.

Now in the second part, we reduce the matrix further into RREF:


1 • • 0

0 1 • 0

0 0 1 0

0 0 0 1

→


1 • 0 0

0 1 0 0

0 0 1 0

0 0 0 1

→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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EXERCISES

Are the following matrices in row-echelon form (REF)?

27–1)

 1 0 0 5

0 1 1 −3

0 0 0 0



27–2)

 1 0 0 4

0 1 0 1

0 0 0 1



27–3)


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



27–4)

 3 0 0 3

0 1 0 0

0 0 1 4



27–5)

 1 −5 3

0 1 12

0 0 1



27–6)


1 4 −8 40

0 1 5 −7

0 0 0 0

0 0 0 1



27–7)

 1 4 −8 2 0

0 1 5 −7 6

0 0 0 0 4



Are the following matrices in reduced row-echelon form (RREF)?

27–8)

[
1 0 0

0 0 1

]

27–9)

 1 3 0

0 0 1

0 0 0



27–10)

 1 0 3 0 2

0 1 1 0 8

0 0 0 0 0



27–11)

 1 0 1 2 4

0 1 0 3 5

0 0 1 2 2



27–12)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



27–13)


1 0 0 9

0 1 0 10

0 0 1 11

0 0 0 0



27–14)

 1 0 0 4 0

0 0 1 2 5

0 1 0 8 3
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Using elementary row operations, reduce the following matrices to

REF.

27–15)

[
1 4

2 12

]

27–16)

 1 2 5

1 3 4

2 7 13



27–17)

 3 0 6 −6

0 1 0 −3

2 −3 4 5



27–18)


0 1 0 −1

1 2 0 1

1 4 1 4

−4 1 3 4


27–19)

[
3 21

2 18

]

27–20)

 4 −8 16

−8 15 −44

−3 7 −4



27–21)

 1 0 −1 2

6 3 3 9

8 5 9 21



27–22)

 2 3

1 7

5 −6



Using elementary row operations, reduce the following matrices to

RREF.

27–23)

[
3 6 9

2 4 5

]

27–24)

 1 0 2

2 1 3

7 7 4



27–25)

 2 10 5 −1

0 0 1 4

1 5 3 2



27–26)


1 1 2 −2

0 1 3 −4

1 2 5 −6

2 1 1 0



27–27)

 3 −6 12

−1 14 92

1 3 51



27–28)

 1 2 −2 6 −28

4 7 −7 22 −98

2 9 −6 25 −111



27–29)

[
1 2 16

4 7 50

]

27–30)

 5 20 75

2 16 46

3 11 43
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ANSWERS

27–1) Yes

27–2) Yes

27–3) No

27–4) No

27–5) Yes

27–6) No

27–7) No

27–8) Yes

27–9) Yes

27–10) Yes

27–11) No

27–12) Yes

27–13) Yes

27–14) No
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You may find slightly different results for the exercises on this page.

REF form of a matrix depends on the operations we choose, but

RREF form is unique.

27–15)

[
1 4

0 1

]

27–16)

 1 2 5

0 1 −1

0 0 1



27–17)

 1 0 2 −2

0 1 0 −3

0 0 0 0



27–18)


1 2 0 1

0 1 0 −1

0 0 1 5

0 0 0 1


27–19)

[
1 7

0 1

]

27–20)

 1 −2 4

0 1 12

0 0 1



27–21)

 1 0 −1 2

0 1 3 −1

0 0 1 5



27–22)

 1 7

0 1

0 0



27–23)

[
1 2 0

0 0 1

]

27–24)

 1 0 0

0 1 0

0 0 1



27–25)

 1 5 0 0

0 0 1 0

0 0 0 1



27–26)


1 0 −1 2

0 1 3 −4

0 0 0 0

0 0 0 0



27–27)

 1 0 0

0 1 0

0 0 1



27–28)

 1 0 0 2 0

0 1 0 3 −9

0 0 1 1 5



27–29)

[
1 0 −12

0 1 14

]

27–30)

 1 0 7

0 1 2

0 0 0
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Systems of Linear Equations

Equations and Solutions: A system of n linear equations in m

unknowns is:

a11x1 + a12x2 + · · ·+ a1mxm = b1
a21x1 + a22x2 + · · ·+ a2mxm = b2

...
...

an1x1 + an2x2 + · · ·+ anmxm = bn

For example,

2x1 − 3x2 = 7

x1 + x2 = 6

is a system of 2 linear equations in 2 unknowns. We can easily find

the solution as: x1 = 5, x2 = 1.

2x1 + 2x2 = 10

x1 + x2 = 6

is another system. It has no solution, in other words, it is incon-

sistent. (Can you see why?)

Two important questions about systems of equations are:

� Is there a solution? (Is the system consistent?)

� Supposing there is a solution, are there other solutions or is

the solution unique?

A geometric interpretation will help us analyze this problem. The

solution of 2 linear equations in 2 unknowns can be considered as

the point of intersection of 2 lines in plane. Clearly, there are three

possibilities:

� The lines intersect at a single point. (Unique solution)

� The lines are paralel. (No solution)

� The lines are identical. (Infinitely many solutions)

x

y

x

y

x

y
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Gaussian Elimination:

The method of Gaussian elimination can be summarized as:

� Represent the system of equations by an augmented matrix.

� Using row operations, obtain row echelon form (REF) of this

matrix.

� Use back-substitution to find the unknowns.

The main idea is that, each row represents one equation. So, row

operations simplify the system but do not change the solution.

For example, consider:

x− 3y = −1

2x+ y = 12

The augmented matrix representing this system is:[
1 −3 −1

2 1 12

]
Reduction to REF gives:[

1 −3 −1

0 1 2

]
The system of equations is:

x− 3y = −1

y = 2

Back substitution gives:

y = 2 ⇒ x = 5.

The system

x+ 5y = 6

2x+ 10y = 15

has no solution. We can see this using Gaussian elimination as

follows: [
1 5 6

2 10 15

]
Subtract 2 times the first row from the second row:[

1 5 6

0 0 3

]
Back substitution gives:

0 = 3

x+ 5y = 6

But obviously 0 6= 3. We have a contradiction. Therefore there is

no solution. The similar system

x+ 5y = 6

2x+ 10y = 12

has infinitely many solutions. Using Gaussian elimination:[
1 5 6

2 10 12

]
[

1 5 6

0 0 0

]
Back substitution gives:

0 = 0

x+ 5y = 6

We can choose y in any way we like. It is a free parameter. So the

solution is:

x = 6− 5y
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Example 28–1: Solve the system of equations

2x+ 8y + 4z = 14

2x+ 7y + 3z = 7

−5x− 18y − 5z = 15

using Gaussian elimination.

Solution: First, we will use an augmented matrix to express the

system of equations in a simple way:

 2 8 4 14

2 7 3 7

−5 −18 −5 15


Then we will use row operations to reduce this matrix

to REF:

R1 →
1

2
R1

 1 4 2 7

2 7 3 7

−5 −18 −5 15



R2 → R2 − 2R1

 1 4 2 7

0 −1 −1 −7

−5 −18 −5 15



R2 → −R2

 1 4 2 7

0 1 1 7

−5 −18 −5 15



R3 → R3 + 5R1

 1 4 2 7

0 1 1 7

0 2 5 50



R3 → R3 − 2R2

 1 4 2 7

0 1 1 7

0 0 3 36



R3 →
1

3
R3

 1 4 2 7

0 1 1 7

0 0 1 12


This matrix is in REF. The system of equations

represented by that is:

x+ 4y + 2z = 7

y + z = 7

z = 12

At this point, we start the back substitution:

z = 12

y + 12 = 7 ⇒ y = −5

x− 20 + 24 = 7 ⇒ x = 3

Clearly, the solution is unique.
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Example 28–2: Solve the following system of equations:

x+ z = 4

5x+ 4y − 7z = 16

2x− 3y + 11z = 11

Solution: The augmented matrix is: 1 0 1 4

5 4 −7 16

2 −3 11 11


Using row operations, we obtain:

R2 → R2 − 5R1

R3 → R3 − 2R1

 1 0 1 4

0 4 −12 −4

0 −3 9 3



R2 →
1

4
R2

 1 0 1 4

0 1 −3 −1

0 −3 9 3



R3 → R3 + 3R2

 1 0 1 4

0 1 −3 −1

0 0 0 0


The back substitution gives:

y − 3z = −1

x+ z = 4

⇒ y = −1 + 3z

⇒ x = 4− z

Here, z is a free parameter. There are infinitely many

solutions.

Example 28–3: Solve the following system of equations:

x+ 4y + z = −1

2x+ 10y = 8

x+ 3y + 2z = −5

Solution: The augmented matrix is: 1 4 1 −1

2 10 0 8

1 3 2 −5


Using row operations, we obtain:

R2 → R2 − 2R1

R3 → R3 −R1

 1 4 1 −1

0 2 −2 10

0 −1 1 −4



R2 →
1

2
R2

 1 4 1 −1

0 1 −1 5

0 −1 1 −4



R3 → R3 +R2

 1 4 1 −1

0 1 −1 5

0 0 0 1


The back substitution gives:

0 = 1

y − z = 5

x+ 4y + z = −1

0 = 1 is impossible, a contradiction. Therefore there are

no solutions. The system is inconsistent.
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Gauss-Jordan Elimination:

Gauss–Jordan elimination is similar to Gaussian elimination, but

instead of stopping at REF, we go all the way to RREF. So,

the reduction of the augmented matrix takes longer. But as an

advantage, we do not have to use back-substitution. The rightmost

column gives the solution directly.

Example 28–4: Solve the following system of equations:

y + 11z = −3

x+ 3y + 10z = 19

x+ y + 3z = 10

Solution: The augmented matrix is: 0 1 11 −3

1 3 10 19

1 1 3 10


Using row operations, we obtain:

R1 ←→ R3

 1 1 3 10

1 3 10 19

0 1 11 −3



R2 → R2 −R1

 1 1 3 10

0 2 7 9

0 1 11 −3



R2 ←→ R3

 1 1 3 10

0 1 11 −3

0 2 7 9



R3 → R3 − 2R2

 1 1 3 10

0 1 11 −3

0 0 −15 15



R3 → − 1

15
R3

 1 1 3 10

0 1 11 −3

0 0 1 −1


This is in REF but we continue:

R2 → R2 − 11R3

 1 1 3 10

0 1 0 8

0 0 1 −1



R1 → R1 − 3R3

 1 1 0 13

0 1 0 8

0 0 1 −1



R1 → R1 −R2

 1 0 0 5

0 1 0 8

0 0 1 −1


This augmented matrix is in RREF. The solution is:

x = 5

y = 8

z = −1

Clearly, the system has unique solution.
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Example 28–5: Solve the system of equations:

x1 + x2 − 2x4 − 2x5 = 5

−x1 + 2x2 + x3 − x4 − 5x5 = 7

3x1 − 4x3 + 6x4 + x5 = 3

using Gauss-Jordan elimination.

Solution: The augmented matrix is: 1 1 0 −2 −2 5

−1 2 1 −1 −5 7

3 0 −4 6 1 3


Using row operations, we obtain:

R2 → R2 +R1

 1 1 0 −2 −2 5

0 3 1 −3 −7 12

3 0 −4 6 1 3



R3 → R3 − 3R1

 1 1 0 −2 −2 5

0 3 1 −3 −7 12

0 −3 −4 12 7 −12



R2 →
1

3
R2

 1 1 0 −2 −2 5

0 1 1
3
−1 − 7

3
4

0 −3 −4 12 7 −12



R3 → R3 + 3R2

 1 1 0 −2 −2 5

0 1 1
3
−1 − 7

3
4

0 0 −3 9 0 0



R3 → − 1

3
R3

 1 1 0 −2 −2 5

0 1 1
3
−1 − 7

3
4

0 0 1 −3 0 0


This matrix is in REF but we continue the reduction:

R2 → R2 − 1
3
R3

 1 1 0 −2 −2 5

0 1 0 0 − 7
3

4

0 0 1 −3 0 0



R1 → R1 −R2

 1 0 0 −2 1
3

1

0 1 0 0 − 7
3

4

0 0 1 −3 0 0


This augmented matrix is in RREF.

x1 − 2x4 + 1
3
x5 = 1

x2 − 7
3
x5 = 4

x3 − 3x4 = 0

There are infinitely many solutions. We can choose x4
and x5 in an arbitrary way. The solution can be expressed

as:

x1 = 1 + 2s− t

x2 = 4 + 7t

x3 = 3s

x4 = s

x5 = 3t

where s and t are free parameters.
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EXERCISES

Solve the following systems of equations:

28–1) 2x+ 3y = −6

x− 2y = 11

28–2) 2x+ 6y = 24

−x− 3y = −6

28–3) 4x+ 5y = −2

−8x− 10y = 4

28–4) 3x+ 5y = 0

x+ 5y = −10

28–5) 5x+ 2y = 4

3x− y = 20

28–6) −x+ 3y = 0

20x+ 10y = 7

28–7) x− y = −4

10x− 4y = 2

28–8) x+ 3y = −15

3x− y = 15

28–9) 4x− 8y = 10

12x− 24y = 20

28–10) x+ 5y = 8

4x+ 20y = 32

28–11) 2x1 + 6x2 = 13

−x1 + 4x2 = 11

28–12) x1 − 20x2 = 8

5x1 − x2 = 7

Solve the following systems of equations:

28–13) x1 + 2x2 − x3 = 6

2x1 + x2 + 4x3 = 9

−x1 − 3x2 + 5x3 = −5

28–14) x1 + 2x2 + 2x3 = 11

x1 + 3x2 + 13x3 = 10

−x1 + 2x2 + 12x3 = 0

28–15) x1 + 4x2 + 2x3 = −3

x1 + x2 − x3 = 3

−2x1 − 4x3 = 6

28–16) x1 + 2x2 − x3 + x4 = 3

2x1 + x2 + x3 + x4 = 4

x1 − x2 + 2x3 = 1

28–17) x1 + 4x3 = 1

2x1 + x2 + 3x3 = 5

3x1 + 2x2 + 2x3 = 9

28–18) x1 + 2x2 − 5x3 = −1

x1 + 3x2 − 7x3 = 0

−x1 + x2 − 2x3 = 3

28–19) x1 − x3 = 3

−x1 + 2x2 − x3 + 2x4 = −6

2x1 + 3x2 + x3 = 9

4x1 + 4x3 + 10x4 = 15

28–20) x1 + x2 + 3x3 − x4 = 3

−x1 + 2x2 − 3x3 + x4 = 0

5x1 + 4x2 + 10x4 = −1

7x1 + 4x2 + 6x3 + 8x4 = 0
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Solve the following homogeneous systems of equations:

28–21) 3x1 + 2x2 = 0

x1 − 4x2 = 0

28–22) 2x1 − 5x2 = 0

−6x1 + 15x2 = 0

28–23) x1 − 3x2 = 0

4x1 + 7x2 = 0

2x1 + 8x2 = 0

28–24) x1 − 4x2 − 7x3 = 0

−x1 + 2x2 + 5x3 = 0

28–25) x1 − x2 − x3 = 0

4x1 + 2x2 − 13x3 = 0

2x1 + 4x2 − 11x3 = 0

28–26) −x1 + 2x2 + 3x3 = 0

x1 + 2x2 − 6x3 = 0

2x1 + x2 + 7x3 = 0

x1 + x2 + x3 = 0

28–27) 2x1 + 3x2 − 7x3 − 7x4 = 0

3x1 − 6x2 + 21x4 = 0

−x1 − 5x2 + 7x3 + 14x4 = 0

28–28) x1 + x2 − x3 = 0

2x1 − 3x2 − 9x4 = 0

x1 + 4x2 + x3 − x4 = 0

Solve the following systems of equations:

28–29) x+ 2y + 3z = 9

2y + z = 4

x+ 2y + 4z = 11

28–30) x+ y − z = 0

2x+ 5y + z = 9

x+ 8y + 4z = 13

28–31) 2x− y + 5z = −2

2y + 3z = 16

x+ y − z = 11

28–32) 3x+ y − z = 5

x− 2y + 8z = −3

10x+ y + 5z = 10

28–33) x+ 2y = 4

x+ 3y + z = 3

4x+ 7y − z = 17

28–34) x− 5y + z = 4

3x− 12y + 4z = 9

3y + z = 0

28–35) x1 − x2 + x3 − x4 = 4

3x1 − 2x2 + 3x3 − 2x4 = 15

2x1 − 2x2 + 3x3 − x4 = 10

3x1 − 3x2 + 4x3 − x4 = 16
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ANSWERS

28–1) x = 3, y = −4.

28–2) There’s no solution.

28–3) There are infinitely many solutions. y is arbitrary

parameter and x = − 1

2
− 5

4
y.

28–4) x = 5, y = −3.

28–5) x = 4, y = −8.

28–6) x = 0.3, y = 0.1.

28–7) x = 3, y = 7.

28–8) x = 3, y = −6.

28–9) There’s no solution.

28–10) There are infinitely many solutions. y is arbitrary

parameter and x = 8− 5y.

28–11) x1 = −1, x2 = 2.5.

28–12) x1 =
4

3
, x2 = − 1

3
.

28–13) x1 = 1, x2 = 3, x3 = 1.

28–14) x1 = 3, x2 = 4.5, x3 = −0.5.

28–15) x1 = 1, x2 = 0, x3 = −2.

28–16) There are infinitely many solutions given by:

x1 =
5

3
− s− r, x2 =

2

3
− s+ r, x3 = r, x4 = 3s.

28–17) There are infinitely many solutions. z is arbitrary

parameter and x = 1− 4r, y = 3 + 5r.

28–18) x1 = −2, x2 = 3, x3 = 1.

28–19) x1 = 4, x2 = 0, x3 = 1, x4 = −0.5.

28–20) There’s no solution.
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28–21) Trivial solution.

28–22) x1 = 5r, x2 = 2r.

28–23) Trivial solution.

28–24) x1 = 3r, x2 = −r, x3 = r.

28–25) x1 = 5r, x2 = 3r, x3 = 2r.

28–26) Trivial solution.

28–27) x1 = 2r − s, x2 = r + 3s, x3 = r, x4 = s.

28–28) x1 = 3r, x2 = −r, x3 = 2r, x4 = r.

28–29) x = 1, y = 1, z = 2. Unique Solution.

28–30) x = 5, y = −1, z = 4. Unique Solution.

28–31) x = 3, y = 8, z = 0. Unique Solution.

28–32) No Solution.

28–33) x = 6 + 2z, y = −z − 1, z is a free parameter.

Infinitely Many Solutions.

28–34) No Solution.

28–35) x1 = 7, x2 = 1, x3 = 0, x4 = 2.

Unique Solution.
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Inverse Matrices

Let A be an n× n matrix. If there exists another n× n matrix B

such that

AB = BA = I

then B is called the inverse of A. (Similarly, A is the inverse of

B.) For example,

A =

[
2 1

6 4

]
and B =

[
2 − 1

2

−3 1

]
are inverses of each other.

If a square matrix A has an inverse, we say A is invertible.

If A and B are invertible and same size, then

� (AB)−1 = B−1A−1

� (A−1)−1 = A

� (An)−1 = (A−1)n = A−n

� (AT )−1 = (A−1)T

Example 29–1: Find the inverse of the matrix A =

[
a b

c d

]
if it exists.

Solution: Assume the inverse exists and it is A−1 =

[
w x

y z

]
.

Using definition, we obtain:[
a b

c d

] [
w x

y z

]
=

[
1 0

0 1

]
aw + by = 1

cw + dy = 0

ax+ bz = 0

cx+ dz = 1

We can solve for w, x, y, z using elimination.

The solution is: A−1 =
1

ad− bc

[
d −b
−c a

]
.

Therefore, the inverse of A exists if ad− bc 6= 0.
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Matrix Inverse by Row Reduction:

Let A be a square matrix. To find A−1, write the identity matrix

I next to A: [
A I

]
Then use row operations to obtain:[

I A−1
]

(This is equivalent to finding RREF.)

If there is a row of zeros on the bottom (for the left part), that

means A can not be reduced to I. In other words A is not invertible.

Example 29–2: Find the inverse of

A =

 1 4 21

0 −1 −5

1 2 10


if it exists.

Solution: Let’s start with: 1 4 21 1 0 0

0 −1 −5 0 1 0

1 2 10 0 0 1


and use row reduction:

R3 → R3 −R1

 1 4 21 1 0 0

0 −1 −5 0 1 0

0 −2 −11 −1 0 1



R2 → −R2

 1 4 21 1 0 0

0 1 5 0 −1 0

0 −2 −11 −1 0 1



R3 → R3 + 2R2

 1 4 21 1 0 0

0 1 5 0 −1 0

0 0 −1 −1 −2 1



R3 → −R3

 1 4 21 1 0 0

0 1 5 0 −1 0

0 0 1 1 2 −1



R2 → R2 − 5R3

 1 4 21 1 0 0

0 1 0 −5 −11 5

0 0 1 1 2 −1



R1 → R1 − 21R3

 1 4 0 −20 −42 21

0 1 0 −5 −11 5

0 0 1 1 2 −1



R1 → R1 − 4R2

 1 0 0 0 2 1

0 1 0 −5 −11 5

0 0 1 1 2 −1



Therefore A−1 =

 0 2 1

−5 −11 5

1 2 −1

.



CHAPTER 29 - Inverse Matrices 205

Example 29–3: Find the inverse of B =


1 2 −2 −1

1 3 5 7

0 0 2 2

2 4 1 4

.

Solution: Start with:


1 2 −2 −1 1 0 0 0

1 3 5 7 0 1 0 0

0 0 2 2 0 0 1 0

2 4 1 4 0 0 0 1



R2 → R2 −R1

R4 → R4 − 2R1


1 2 −2 −1 1 0 0 0

0 1 7 8 −1 1 0 0

0 0 2 2 0 0 1 0

0 0 5 6 −2 0 0 1



R3 → 1
2
R3

R4 → R4 − 5R3


1 2 −2 −1 1 0 0 0

0 1 7 8 −1 1 0 0

0 0 1 1 0 0 1
2

0

0 0 0 1 −2 0 −5
2

1



R1 → R1 +R4

R2 → R2 − 8R4

R3 → R3 −R4


1 2 −2 0 −1 0 −5

2
1

0 1 7 0 15 1 20 −8

0 0 1 0 2 0 3 −1

0 0 0 1 −2 0 −5
2

1



R1 → R1 + 2R3

R2 → R2 − 7R3

R1 → R1 − 2R2


1 0 0 0 1 −2 11

2
1

0 1 0 0 1 1 −1 −1

0 0 1 0 2 0 3 −1

0 0 0 1 −2 0 −5
2

1


⇒ B−1 is the right part of the matrix.

Example 29–4: Find the inverse of

C =

 1 −2 0

3 5 −6

7 8 −12


if it exists.

Solution: Let’s start with: 1 −2 0 1 0 0

3 5 −6 0 1 0

7 8 −12 0 0 1


and use row reduction:

R2 → R2 − 3R1

 1 −2 0 1 0 0

0 11 −6 −3 1 0

7 8 −12 0 0 1



R3 → R3 − 7R1

 1 −2 0 1 0 0

0 11 −6 −3 1 0

0 22 −12 −7 0 1



R3 → R3 − 2R2

 1 −2 0 1 0 0

0 11 −6 −3 1 0

0 0 0 −1 −2 1


We have a row of zeros.

⇒ It is impossible to row reduce C to I.

⇒ C is not invertible.
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Solution of Systems of Equations by Matrix Inverses:

Consider the system of n linear equations in m unknowns:

a11x1 + a12x2 + · · ·+ a1mxm = b1
a21x1 + a22x2 + · · ·+ a2mxm = b2

...
...

an1x1 + an2x2 + · · ·+ anmxm = bn

We can represent this system as a matrix equation:

A−→x =
−→
b

where

A =

 a11 a12 · · · a1m
...

...
...

an1 an2 · · · anm

 , −→x =


x1
x2
...

xm

 , −→
b =


b1
b2
...

bn


For the special case n = m, the matrix A is square. In this case,

there is a unique solution if and only if A is invertible, where

−→x = A−1
−→
b

If A is not invertible, there may be no solution or there may be

infinitely many solutions, depending on
−→
b .

The homogeneous system A−→x =
−→
0 always has the trivial (zero)

solution.

−→x =


0

0
...

0


If A is invertible, there is no other, nontrivial solution.

Example 29–5: Solve the following systems of equations:

x1 + 4x3 = 6

−2x2 − x3 = 5

3x1 + 5x2 + 2x3 = −7

y1 + 4y3 = 50

−2y2 − y3 = 75

3y1 + 5y2 + 2y3 = 100

Solution: We can solve multiple systems having the same

coefficient matrix by using a single augmented matrix.

The given systems can be written as:

A−→x =
−→
b and A−→y = −→c , where

A =

 1 0 4

0 −2 −1

3 5 2

 , −→x =

 x1
x2
x3

,

−→y =

 y1
y2
y3

 , −→
b =

 6

5

−7

 , −→c =

 50

75

100

.

Using row reduction on
[
A I

]
we find:

A−1 =
1

25

 1 20 8

−3 −10 1

6 −5 −2

.

Now we can solve both systems easily as:

−→x = A−1
−→
b =

 2

−3

1

 and

−→y = A−1−→c =

 94

−32

−11
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EXERCISES

Find the inverse of each matrix, if it exists:

29–1)

[
1 5

2 2

]

29–2)

[
13 5

5 1

]

29–3)

[
4 3

12 9

]

29–4)

 1 2 0

3 5 1

−1 0 1



29–5)

 1 2 1

−1 0 −1

1 5 2



29–6)

 4 0 3

1 2 1

3 0 1



29–7)

 7 2 3

−4 1 −5

−1 4 −7



29–8)

 11 6 −5

−8 2 12

1 −9 −13



Find the inverse of each matrix, if it exists:

29–9)

 1 2 3

0 2 1

1 2 4



29–10)

 1 2 1

1 1 2

1 0 1



29–11)

 2 1 0

−3 −1 1

−4 −2 1



29–12)

 1 3 4

3 11 18

2 6 11



29–13)

 2 4 1

6 6 −20

1 5 12



29–14)

 1 4 6

−1 2 8

5 3 1



29–15)

 5 2 0

1 −2 1

4 3 −1



29–16)

 1 2 −1

1 3 1

1 0 −5
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Find the inverse of each matrix, if it exists:

29–17)

 4 0 0

−2 3 0

1 −9 1/2



29–18)

 0.5 −1 5

1 2 4

1 6 0



29–19)


1 2 0 0

3 1 3 −2

1 −1 2 −3

0 1 −2 6



29–20)


2 −2 4 1

2 −1 0 4

2 −3 6 1

0 1 0 −2



29–21)


1 0 2 3

4 1 3 −1

1 1 2 1

−2 0 1 5



29–22)


0 2 −2 0

0 1 2 4

2 1 0 4

1 2 0 1



Solve the following systems of equations using inverse of the coef-

ficient matrix:

29–23) 3x1 + 4x2 − 2x3 = 11

−x1 + 2x2 + 2x3 = 3

x1 + 2x2 − x3 = 5

29–24) 3x1 + 4x2 − 2x3 = 16

−x1 + 2x2 + 2x3 = 18

x1 + 2x2 − x3 = 7

29–25) 5x1 + 8x2 + 5x3 = 9

x1 + 2x2 + x3 = 3

x2 + x3 = 4

29–26) 5x1 + 8x2 + 5x3 = 2

x1 + 2x2 + x3 = 0

x2 + x3 = 1

29–27) x1 + 2x2 = 5

3x1 + 5x2 + x3 = 15

−x1 + x3 = −2

29–28) x1 + 2x2 + x3 = 0

−x1 − x3 = 0

x1 + 5x2 + 2x3 = −2

29–29) x1 + 2x2 = 4

3x1 + x2 + 3x3 − 2x4 = −1

x1 − x2 + 2x3 − 3x4 = −11

x2 − 2x3 + 6x4 = 25

29–30) 2x1 − 2x2 + 4x3 + x4 = 5

2x1 − x2 + 4x4 = 9

2x1 − 3x2 + 5x3 + x4 = 4

x2 − 2x4 = −1
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ANSWERS

29–1)
1

8

[
−2 5

2 −1

]

29–2)
1

12

[
−1 5

5 −13

]

29–3) Inverse does not exist.

29–4)
1

3

 −5 2 −2

4 −1 1

−5 2 1



29–5)

 2.5 0.5 −1

0.5 0.5 0

−2.5 −1.5 1



29–6)
1

10

 −2 0 6

−2 5 1

6 0 −8



29–7) Inverse does not exist.

29–8) Inverse does not exist.

29–9)
1

2

 6 −2 −4

1 1 −1

−2 0 2



29–10)
1

2

 1 −2 3

1 0 −1

−1 2 −1



29–11)

 1 −1 1

−1 2 −2

2 0 1



29–12)
1

6

 13 −9 10

3 3 −6

−4 0 2



29–13) Inverse does not exist.

29–14)
1

64

 −22 14 20

41 −29 −14

−13 17 6



29–15)
1

5

 −1 2 2

5 −5 −5

11 −7 −12



29–16) Inverse does not exist.



210 CHAPTER 29 - Inverse Matrices

29–17)
1

12

 3 0 0

2 4 0

30 72 24



29–18)
1

4

 −24 30 −14

4 −5 3

4 −4 2



29–19)
1

7


15 −12 28 10

−4 6 −14 −5

−17 15 −28 −9

−5 4 −7 −1



29–20)
1

2


6 −1 −4 −1

−12 4 8 6

−7 2 5 3

−6 2 4 2



29–21) Inverse does not exist.

29–22)
1

18


−7 −7 5 8

2 2 −4 8

−7 2 −4 8

3 3 3 −6



29–23)

 x1
x2
x3

 =

 1

2

0



29–24)

 x1
x2
x3

 =

 2

5

5



29–25)

 x1
x2
x3

 =

 −4

3

1



29–26)

 x1
x2
x3

 =

 0

−1

2



29–27)

 x1
x2
x3

 =

 3

1

1



29–28)

 x1
x2
x3

 =

 2

0

−2



29–29)


x1
x2
x3
x4

 =


2

1

0

4



29–30)


x1
x2
x3
x4

 =


3

1

0

1





Chapter 30

Determinants

Determinants by Cofactors:

The determinant of a 1× 1 matrix is itself. For any other square

matrix, we define the determinant recursively.

We will use the notation
∣∣A∣∣ to denote the determinant of the

square matrix A.

Cofactor: Let A be an n × n matrix. Let’s delete the ith row

and jth column, and calculate the determinant of the remaining

(n− 1)× (n− 1) submatrix. Call it Mij . The cofactor of the entry

aij is:

Cij = (−1)i+jMij

For example, for the matrix [
a b

c d

]
cofactor of a is d and the cofactor of b is −c.
For the matrix  a b c

p q r

x y z



cofactor of a is

∣∣∣∣ q r

y z

∣∣∣∣, cofactor of b is −
∣∣∣∣ p r

x z

∣∣∣∣ and

cofactor of q is

∣∣∣∣ a c

x z

∣∣∣∣.
The determinant of any other square matrix is defined as:∣∣A∣∣ = det(A) = ai1Ci1 + · · ·+ ainCin, or∣∣A∣∣ = det(A) = a1jC1j + · · ·+ anjCnj

In other words:

� Choose a row (or column).

� Find the cofactor of each entry on that row (or column).

� Multiply the entries by the cofactors and add.

This is called the cofactor expansion. For example, the determinant

of a 2× 2 matrix is: ∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc

(Do you remember this expression from previous chapters?)
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If we use the first row to find the determinant of a 3× 3 matrix,

we obtain:

∣∣∣∣∣∣
a b c

p q r

x y z

∣∣∣∣∣∣ = a

∣∣∣∣ q r

y z

∣∣∣∣− b ∣∣∣∣ p r

x z

∣∣∣∣+ c

∣∣∣∣ p q

x y

∣∣∣∣
= aqz − ayr − bpz + bxr + cpy − cqx

If we choose the second column, we obtain:∣∣∣∣∣∣
a b c

p q r

x y z

∣∣∣∣∣∣ = −b
∣∣∣∣ p r

x z

∣∣∣∣+ q

∣∣∣∣ a c

x z

∣∣∣∣− y ∣∣∣∣ a c

p r

∣∣∣∣
= −bpz + bxr + aqz − cqx− ayr + cpy

which is identical. It does not matter which one we choose.

Note that in each term, there’s one and only one entry from each

row and each column. Therefore the determinant of an n × n

matrix requires n! terms.

Example 30–1: Find the determinant of A =

 4 9 5

1 2 0

−3 6 0

.

Solution: Using the third column, we obtain:

∣∣A∣∣ = 5

∣∣∣∣ 1 2

−3 6

∣∣∣∣
= 5

(
6− (−6)

)
= 60

.

Example 30–2: Find determinant of A =


1 2 −1 3

2 0 0 4

8 −1 3 0

−5 1 2 −7

.

Solution: Using the second row, we obtain:

∣∣A∣∣ = −2

∣∣∣∣∣∣
2 −1 3

−1 3 0

1 2 −7

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣
1 2 −1

8 −1 3

−5 1 2

∣∣∣∣∣∣
= (−2) · (−50) + 4 · (−70)

= −180

.

Example 30–3: Find the determinant of A =


5 48 7 12

0 3 10 −3

0 0 2 99

0 0 0 1

.

Solution: Using the first column, we obtain:

∣∣A∣∣ = 5

∣∣∣∣∣∣
3 10 −3

0 2 99

0 0 1

∣∣∣∣∣∣
= 5 · 3

∣∣∣∣ 2 99

0 1

∣∣∣∣
= 5 · 3 · 2 · 1

= 30

.

Only the diagonal entries matter.
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Inverses by Adjoint Matrices: Let A be an n× n matrix and

Cij be the cofactor of aij. If we replace each entry by its cofactor

and then transpose the matrix, we obtain the adjoint. In other

words, the matrix 
C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn


T

is called the adjoint of A.

Do not forget that we have a sign of (−1)i+j in front of each entry.

These signs are arranged as follows:
+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...



For example, the adjoint of A =

 8 4 0

1 5 7

2 3 6

 is:

 9 8 −7

−24 48 −16

28 −56 36

T

=

 9 −24 28

8 48 −56

−7 −16 36



Theorem: If A is an invertible matrix, then A−1 =
adj(A)

det(A)

Example 30–4: Find the inverse of the matrix A =

 1 2 3

2 5 1

0 1 4


using the above formula.

Solution: A−1 =
adj(A)

det(A)

=



∣∣∣∣ 5 1

1 4

∣∣∣∣ − ∣∣∣∣ 2 1

0 4

∣∣∣∣ ∣∣∣∣ 2 5

0 1

∣∣∣∣
−
∣∣∣∣ 2 3

1 4

∣∣∣∣ ∣∣∣∣ 1 3

0 4

∣∣∣∣ − ∣∣∣∣ 1 2

0 1

∣∣∣∣∣∣∣∣ 2 3

5 1

∣∣∣∣ − ∣∣∣∣ 1 3

2 1

∣∣∣∣ ∣∣∣∣ 1 2

2 5

∣∣∣∣



T

∣∣∣∣∣∣
1 2 3

2 5 1

0 1 4

∣∣∣∣∣∣

=

 19 −8 2

−5 4 −1

−13 5 1


T

9

=
1

9

 19 −5 −13

−8 4 5

2 −1 1
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Example 30–5: Find the inverse of the matrix B =

 7 5 8

2 1 0

6 4 3


Solution: Let’s find the cofactor of each entry:

Cofactor of 7: C11 =

∣∣∣∣ 1 0

4 3

∣∣∣∣ = 3

Cofactor of 5: C12 = −
∣∣∣∣ 2 0

6 3

∣∣∣∣ = −6

Cofactor of 8: C13 =

∣∣∣∣ 2 1

6 4

∣∣∣∣ = 2

Cofactor of 2: C21 = −
∣∣∣∣ 5 8

4 3

∣∣∣∣ = 17

Cofactor of 1: C22 =

∣∣∣∣ 7 8

6 3

∣∣∣∣ = −27

Cofactor of 0: C23 = −
∣∣∣∣ 7 5

6 4

∣∣∣∣ = 2

Cofactor of 6: C31 =

∣∣∣∣ 5 8

1 0

∣∣∣∣ = −8

Cofactor of 4: C32 = −
∣∣∣∣ 7 8

2 0

∣∣∣∣ = 16

Cofactor of 3: C33 =

∣∣∣∣ 7 5

2 1

∣∣∣∣ = −3

The determinant of B is:∣∣B∣∣ = 7

∣∣∣∣ 1 0

4 3

∣∣∣∣− 5

∣∣∣∣ 2 0

6 3

∣∣∣∣+ 8

∣∣∣∣ 2 1

6 4

∣∣∣∣
= 21− 30 + 16 = 7

The adjoint of B is:

adjB =

 3 −6 2

17 −27 2

−8 16 −3

T

=

 3 17 −8

−6 −27 16

2 2 −3


Therefore the inverse of B is:

B−1 =
adj(B)

det(B)
=

1

7

 3 17 −8

−6 −27 16

2 2 −3



Properties of the Determinant Function:

For n× n matrices:

� If A has a row (or column) of zeros, then det(A) = 0.

� If A is an upper triangular, lower triangular or a diagonal

matrix, then det(A) is the product of the entries on the main

diagonal.

� The determinant of any identity matrix is 1.

� det(A) = det(AT )

� A is invertible if and only if det(A) 6= 0.

� det(AB) = det(A) det(B) ⇒ det(A−1) =
1

det(A)
.
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EXERCISES

Find the determinants of the following matrices: (if defined)

30–1)

[
3 7

−2 6

]

30–2)

[
10 29

0 17

]

30–3)

[
5 9 7

12 0 −3

]

30–4)

 5 1 0

0 1 4

3 2 −1



30–5)

 8 2 −1

1 0 0

9 6 −5



30–6)

 −5 6 3

0 7 8

1 2 3



30–7)


3 1 −2 0

5 1 3 0

4 2 1 6

8 2 3 0



30–8)


7 12 9 20

0 1 6 8

0 0 2 16

0 0 0 1



Find the determinants of the following matrices: (if defined)

30–9)

[
5 x

3 6

]

30–10)

 4 13 2

0 1 0

8 −7 9



30–11)

 a b c

6 3 −1

4 2 0



30–12)

 7 5 3

14 10 6

−4 −2 1



30–13)

 3 8 0

x y z

2 5 0



30–14)


2 4 0 3

0 7 −8 12

0 0 2 −9

0 0 0 1



30–15)

[
7 11

56 93

]

30–16)

 1 7 8

2 16 25

6 48 79
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Find the inverse of the following matrices using the adjoint formula:

(If possible)

30–17)

[
10 8

7 6

]

30–18)

[
6 11

4 9

]

30–19)

[
10 7

30 21

]

30–20)

 1 2 4

3 2 1

0 0 6



30–21)

 5 0 2

1 −8 9

4 −2 3



30–22)

 −1 0 1

0 3 4

2 0 3



30–23)

 0 1 0

5 0 −4

0 2 0



30–24)


2 0 1 0

3 5 0 −1

1 0 2 0

0 4 −2 1



ANSWERS

30–1) 32

30–2) 170

30–3) Determinant is defined only for square matrices.

30–4) −33

30–5) 4

30–6) 2

30–7) 24

30–8) 14
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30–9) 30− 3x

30–10) 20

30–11) 2a− 4b

30–12) 0

30–13) z

30–14) 28

30–15) 35

30–16) 8

30–17)
1

4

[
6 −8

−7 10

]

30–18)
1

10

[
9 −11

−4 6

]

30–19) Inverse does not exist.

30–20)
1

24

 −12 12 6

18 −6 −11

0 0 4



30–21)
1

30

 −6 −4 16

33 7 −43

30 10 −40



30–22)
1

15

 −9 0 3

−8 5 −4

6 0 3



30–23) Inverse does not exist.

30–24)
1

27


18 0 −9 0

−8 3 7 3

−9 0 18 0

14 −12 8 15




